
ANL-FRA-165 ANL-FRA-165

ENGINEERING

ENGINEERING

ENGINEERING

ENGINEERING

ENGINEERING

ENGINEERING

PHYSICS

PHYSICS

PHYSICS

PHYSICS

PHYSICS

PHYSICS

DIVISION

DIVISION

DIVISION

DIVISION

DIVISION

DIVISION

; DIViSiON

Engineering Physics
Production Code

Implementation on the
Cray X-MP

by

C. H. Adams, K. L. Derstine, and B. J. Toppel

\
Argonne National Laboratory, Argonne, Illinois 60439

, , , , Operated by the University of Chicago
"^V, „ y ' 'or the United States Department ol Energy Under Contract W-31 -109-Eng-38

Bas. Technotogy

Argonne NaUonal Laboratory, with facilities In the states of Illinois and Idaho,
is owned by the United States government, and operated by The University uf
Chicago under the provisions of a contract with the Department of Energy.

DISCLAIMKR

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or
Implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
Information, apparatus , product, or process disclosed, or
represents that Its use would not Infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark manufacturer,
or otherwise, does not necessarily constitute or Imply Its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

March 29,1989 FRA-TM-165

ENGINEERING PHYSICS PRODUCTION CODE IMPLEMENTATION ON THE CRAY X-MP

by

C. H. Adams, K. L. Derstine, and B, ,1. Toppel

Engineering Physics Division
Argonne National Laboratory

Argonne, Illinois 60439

FRA TECHNICAL MEMORANDUM NO. 165

Work supported by the U.S. Department of Energy, Nuclear Energy Programs, under contract
W-31-109-Eng-38.

ABSTRACT

Engineering Physics Production Code Implementation on the Cray X-MP

by

C. H. Adams, K. L. Derstine, and B. J. Toppel

This document describes Engineering Physics Division software designed to ease transition to the
Cray X-MP computer and to provide support in the long term for a multi-computer environment for batch
reactor analysis calculations. These activites include development ofUnicos scripts to provide easier
access to the new system, implementation of the File Transfer Utility FTU which provides format conver­
sion of binary files between the Cray and other computer systems, and development of a modular environ­
ment analogous to the system which has been in use on the Argonne IBM computer system for many
years.

Ml

CONTENTS

Abstract

Chapter 1: Introduction 1

Chapter!: APSHELL, UNICOS Scripts for Batch Computing 2

Introduction 2
User Shell Variables 5

APBANNER 5
APDEST 6
APFETCH 6
APINPUT 6
APLASERWRITER 7
APLINES 7
APMESSAGES 7
APOUTPUT 8
APPOSTPATH 8
APPREPATH 8
APTEST 9

User APSHELL Scripts 9
APSHELL
APECHO "stringl" "string2" "string3" 9
IFBOMB command 10
POSTLIB ibmfilel ibmfile2 ibmfilen 10
POSTPATH pathi path2 pathn * II
PRELIB ibmfilel ibmfile2 ibmfilen II
PREPATH pathI palh2 pathn II
STAGEIN type crayfile ibmfile jcl jcl jcl 12
STAGEOUT type crayfile ibmfile jcl jcl jcl 13
STASHFILE crayfile 14
XDIF3D crayfile, XFTU crayfile, XREBUS3 crayfile, XTWODANT crayfile,

XVIM crayfile, XVARI3D crayfile 14
Shell Programmer Shell Varibles 15

APTEMP, APTEMP2, APTEMPX, APTEMPS, APTEMPS2, APTEMPS5, etc 15
Shell Programmer APSHELL Scripts 15

APHEADER 15
APSTARTfile 15
APWRAPcode 15

Chapters: The File Transfer Utility, FTU 16

Introduction 16

FTU User Infonmation 16
Files Processed by FTU 16
FTU Input Conventions 17
Cray Execution of FTU 18
IBMExecuUonofFTU 19
VAX Execution of FTU 20
FTU Edits 21
FTU BCD Conversion 22

Programming Information 23
FTU Limitations 26

Chapter 4: A Modular Programming System for Engineering Physics Division Codes 27

Introduction 27
Functional Requirements for a Fortran 77 based Modular System 27

Implementation Overview 28
Synchronization of Printed Output 29

Synchronization of Printed Output in the UNICOS System 30
Synchronization of Printed Output in the VAXA'MS System 31
Synchronizationof Printed Output on the IBM MVS System 31

Module Linking 31
Module Linking in the UNICOS System 32
Module Linking in the VAXA'MS System 33
Module Linking in the IBM MVS System 33

Local Code Conversion Considerations for the New Modular System 33
CONVTCD Keyword Changes 33
Path-Driver Changes 34
Applications Module Changes 34
Changes to Utility Subroutines in the Existing Libraries 34

Modular Library Maintenance and Applications 35
Modular Library Maintenance on the UNICOS System 35
Modular Applications 36

Acknowledgements 39

References 40

Appendix A: IBM Catalogued Procedure APPROC 41

1
m

LIST OF FIGURES

1. Simple DIF3D Job Using APSHELL Shell Variables 3

2. Elaborate Example of the Use of the APSHELL Shell Variables 4

3. Typical Cray FTU Job Converting IBM to Cray Format 18

4. Typical Cray FTU Job Converting VAX to Cray Format 19

5. Typical IBM FTU Job 20

6. Typical VAX FTU COMMAND File 21

7. FTU Generated Edit of Dataset NDXSRF 22

8. BCD Equivalent for Dataset NDXSRF 23

9. Simple Path-Driver Module in a Modular System 29

10. Simple Applications Module in a Modular System 30

11. Typical segldr Overlay Tree Directives File 36

12. UNICOS Script Fragment for Updating a MODLIB 37

13. Sample Production Job Script Fragment for UNICOS Modular System 38

14. IBM Catalogued Procedure APPROC 42

^

:M

LIST OF TABLES

1. Datasets Processed by FTU 17

2. FTU Subroutines 24

3. Cray Format Conversion Utility Routines used by FTU 25

"

Chapter 1

INTRODUCTION

The arrival of a Cray X-MP/14 at Argonne significanUy changed the computing environment for
users of Engineering Physics Division (EP) reactor analysis programs. In a relatively short period of time
the Central Computing Facility expanded from an IBM-only operation to one that offered batch and inter­
active computing on IBM, DEC and Cray machines. Engineering Physics Methods and Computational
Support (M&C) Section undertook the development of several pieces of software designed not only to
make the transition easier but also to provide support in the long term for a multi-computer environment
for batch reactor analysis calculations.

The UNICOS operating system on the Cray is quite different from the IBM Job-Control Language
(JCL) that EP users were accustomed to. Most users did not want to learn Unix to the degree necessary to
maintain the job-control statements in their batch-job input files. Chapter 2 describes APSHELL, a
system of UNICOS shell variables and scripts which provides an easy-to-use environment for the kind of
batch work that makes up most of the Division's computing. The M&C Section will maintain APSHELL
in such a way as to accomodate future system changes without requiring users to modify their job input.
When the Division acquires Unix-based workstations we intend to adapt APSHELL to them to provide
continuity.

Ancillary calculations are often performed following a long production calculation making use of
smaller codes on the IBM computers at ANL. With the production codes moving over to the Cray com­
puter, there was a need to provide a binary file format converter so that binary files written on the Cray
could be read on the IBM computers, and vice versa. Chapter 3 describes the File Transfer Utility, FTU
which permits communication via binary files between the Cray, IBM, VAX, and CDC computers.

The advantages of modular programming have been enjoyed at ANL since the development of the
ARC System [1]. Since the UNICOS operating system does not provide the capability of linking modular
codes at run time, this effort has included the development of a modular programming system on the
Cray, IBM, and VAX computer systems which essentially duplicates the capabilities afforded by the IBM
operating system and is far more portable. Chapter 4 describes the characteristics of this modular pro­
gramming system.

A number of places in this document refer to procedures or scripts with the prefix AP rather than EP
(e.g. APSHELL, APPROC, etc.). This is done for historical reasons since their development occurred in
the Applied Physics Division before it was combined with the Engineering Division and renamed the
Engineering Physics Division.

1-

Chapter 2

APSHELL, UNICOS SCRIPTS FOR BATCH COMPUTING

2.1 Introduction

This set of LINICOS shell variables and scripts is intended to provide a batch computing environ­
ment in which users of the Engineering Physics Division's reactor analysis codes can work conveniently
and safely without having to write or maintain a lot of UNICOS JCL themselves. In some sense, they
serve the same sort of function that the catalogue procedures ARCSPOnn have been providing on the IBM
machines. However, UNICOS and IBM/MVS are entirely different kinds of operating systems, and
direct comparisons between the ARCSP procedures and APSHELL are generally not useful. APSHELL
was developed with the following objectives in mind:

HP's production codes run in a batch environment, but UNICOS is fundamentally an
interactive system. Batch jobs, running unattended, need simple-to-use tools for making
basic decisions about how to handle errors.

Scripts that fetch and dispose files have built-in, default IBM JCL, but since EP's IBM
users generally feel comfortable about overwriting DD cards in IBM catalogued proce­
dures, those scripts permit the entry of IBM JCL to change the default JCL of files.

Users are permitted, and even encouraged, to mix UNICOS and APSHELL commands.

UNICOS system output is just as eye-tangling to read as the IBM's JESMSG, JESJtX
and SYSMSG files. APSHELL provides easily-spotted error messages.

To the extent possible, APSHELL provides English-language information and error mes­
sages.

The APSHELL syntax is different from UNICOS; in particular APSHELL commands are
in upper case and do not follow the UNICOS practice of identifying parameters with
hyphens. This is done partly to simplify the syntax and partly to make a clear distinction
between UNICOS and APSHELL commands.

For the kind of work we do in EP, APSHELL lets users set up jobs with little or no IBM JCL and
with a minimum of Cray commands. The APSHELL scripts perform some of the basic functions needed
in batch computing on Argonne's Cray X-MP:

STAGEIN and STAGEOUT manage the flow of files between the X-MP and the IBM
disk fami. Although they are built around the UNICOS commands "fetch" and "dispose",
they include error checking and offer built-in, default IBM JCL.

PREPATH and POSTPATH modify the search path to include access to additional direc­
tories containing other scripts.

PRELIB and POSTLIB make available libraries of load modules.

- 2 -

IFBOMB and STASHFILE are tools to be used in detecting errors and recovering from
various kinds of abnormal terminations.

APSHELL is an initialization script.

Anumberof additional, relatively simple .scripis (XDIF3D, XFTU, XREBUS3,
XTWODANT, XVIM, XBANDIT, XRETALLY, and XVARI3D) are available for
some production codes.

Beside these scripts, the APSHELL environment includes a number of shell variables which users can set
to simplify the disposition of output and the defmition of job parameters.

Figure I illustrates a very simple DIF3D (2| job that uses APSHELL shell variables and scripts.
The job fetches a Cray-format ISOTXS [3] data set and, if the fetch was successful, executes DIF3D. The
D1F3D output and the standard-output file arc sent to the 3800 printer.

user=
QSUB-r CHAOl
QSUB -q y

IT 80
IM 500kw
eo

QSUB
QSUB
QSUB
QSUB

APOUTPUT=output
A P D E S T = P R 0

. APSHELL
cat > input «'EOD'
BLOCK=OLD
DATASET=ISOTXS
BLOCK=STP021

BCD job input

EOD

STAGEIN CRAYBINARY ISOTXS B21006.VERY.TEMP.CRAY.ISOTXS
IFBOMB
XDIF3D

Figure 1. Simple DIF3D Job Using APSHELL Shell Variables

Figure 2 shows a much more complicalcd job lliiil letches a number of different kinds of files from
the IBM disks, compiles and links a UDOIT inio a sl;iiKl-aloiic D1F3D, uses the FTU utility (Chapter 3) lo
convert an ISOTXS file from IBM to Cray formal, cxcciiles D1F3D and finally disposes an RTFLUX [3]

^

file and the Cray load module back to the IBM disks, a copy of the output lo microfiche and a PostScript
graphics file to the LaserWriter al RADS12. There arc a number of error checks along the way to abort
the job if a problem arises.

«

u3er=
QSUB
QSUB
QSUB
QSUB
QSUB
QSUB

-r CHAOS
-q y
-IT 70
-IM lOOOKw
-eo

se t -vx
APOUTPUT=output
APDEST=PR0,FLASH=LINE

APLASERWRITER=RM112PR2

APBANNER=samplG2
APFETCH=YES
. APSHELL
################«#######*«#«#«««#############################•####

COMPILE A UDOIT MODULE AND LINK INTO DIF3D.

STAGEIN CARDS program.f B2100 6.VERY.TEMP.FORTRAN 'DISP=(OLD,DELETE) '
cft77 -e Dcxs program.f >> output
IFBOMB banner 'cft77' >> output
grep 'error' program.1 >> output
grep 'warning' program.I >> output
cat program. 1 >> output
cat «END_OF_FILE > directs
LIB=/nl/b2100 6/cccc/3eglib.a,/nl/b2100 6/cccc/3yslib.a
LIB=/nl/b2100 6/cccc/calanl.a,$ANLUTIL,SDISLIB
ECHO=ON
MODULES"=ENDFDA :/nl/b21006/cccc/3eglib.a
USX=WARNING
MAP-ALPHA
FORCE=ON
ABS=dif3d
END_0F_F1LE
3egldr program.o directs >> output
IFBOMB

STAGEIN ISOTXS, EXECUTE FTU.

STAGEIN IBMBINARY STACK B21006.VERY.TEMP.IBM.ISOTXS
cat > input <<'EOF'
ISOTXS 1 CRAY IBM
EOF

Figure 2. Elaborate Example of llic ll.sc of llic APSHELL Shell Variables

XFTU
rm STACK
IFBOMB

EXECUTE DIF3D WITH THE UDOIT.

cat «EOD> input
BLOCK=OLD
DATASET=ISOTXS
BLOCK=STP021

BCD job input

EOD
XDIF3D
STAGEOUT POSTSCRIPT fort.90
STAGEOUT OUTPUT output '(ANLVM,FICHE)'
IFBOMB
STAGEOUT LOADMODULE difSd B21006.CRAY.UDOIT.MODLIB \
'DISP=(NEW,CATLG) ,UNIT=TEMP,SPACE=(TRK, (60,5),RLSE) '
•DOB'

Figure 2. Elaborate Example of the Use of the APSHELL Shell Variables (cont'd.)

The next section of this writeup descrit)es a set of shell variables which the user may want to set.
The last section describes the shell scripts available and shows examples of their use.

2.2 User Shell Variables

Users may set default definitions for a number of job parameters by means of the "shell variables"
described in this section. In most cases they should probably be defined before the initialization call to
APSHELL so that they are available to all of llio APSHELL scripts invoked during a job, but there are
situations where users will want to change them during execution. For most of the following shell vari­
ables the initialization call to APSHELL will set default definitions if the user has not supplied them.

2.2.1 APBANNER

APBANNER contains a string (up to 10 characters) ihat will be printed at the top of the header
page in big letters.

If the shell variable APBANNER is to be set, it must be set before the initializing command
APSHELL.

APBANNER is uscd by the APHEADER .scripl.

- 5 -

Example: APBANNER='hi t h e r e '

Default: the NQS job name (Ihc "request-name" define by QSUB - r)

2,2.2 APDEST

This is the default destination for standard ()ul|)ul and oilier printed output. The destination can
include other parameters recognized hy the MVS Suuion; one ol the examples below lums on the
forms flash for the 3800 primer. Also see the examples below for the special formal required to
make the default destination a CMS session.

To be fully effective this parameter should be set before the initialization call to APSHELL. !
i

APDEST is used by APSTART and APWRAP .

Examples: APDEST=RADS12
A P D E S T = P R O , F L A S H = L I N E I
APDEST=PR0,COPIES=2
APDEST-'(ANLVM,B21006)'
APDEST=VMFICHE

Default: null

2.2.3 APFETCH

When APFETCH=YES both the standard oulpul file and the output file defined by the
APOUTPUT shell variable will be routed lo Wylbur FETCH before printing, regardless of what is
specified in the IBM JCL that submits the Cray job. If lliis shell variable is set to anything else
the MVS station determines whether or nol llic oulput is to be FETCHed from the IBM JCL that
submits the job.

If the shell variable APFETCH is to be set, it should be set before the initializing command
APSHELL.

APFETCH is used by the APSTART and APWRAP scripis.

Examples: APFETCH=YES
APFETCH=NO

Default: null

When APFETCH=YES is uscd with APDEST=VMFICHE, the oulput files can be
FETCHed before they are sent to the fiche unit. When APDEST= ' (ANLVM, FICHE) '
the output files go directly lo the ficlic unit and cannot be FETCHed.

2.2.4 APINPUT

APINPUT is the default BCD input lile name liir the pioduelion-code .scripts XDIF3D, XFTU,
XREBUS3, XTWODANT, XVIM, XBANDIT, XRETALLY, and XVARI3D. Those scripts
also permit the user lo specify the BCD inpiiLlile name as an argument.

- 6 -

The shell variable APINPUT can be set nt any time.

APINPUT is used by the XDIF3D, XFTU, XREBUS3, XTWODANT, XVIM, XBANDIT,
XRETALLY, and XVARI3D. scripts.

Examples; APINPUT=my_input

Default: i n p u t

2.2.5 APLASERWRITER

APLASERWRITER is the default destination for PostScript files handled via the STAGEOUT
script.

The shell variable APLASERWRITER can be .set any time before the command STAGEOUT.

Examples: A P L A S E R W R I T E R = R M 1 1 2 P R 2 (RADS12)
APLASERWRITF.R-RM010PR3 (ZPPR)

Default: RM113PR2 (building 221)

2.2.6 APLINES

APLINES contains the file line limit for the job (i.e. the JCL parameter OUTLIM). Supply the
limit in actual number of lines (not in diousands as on the IBM machine).

If the shell variable APLINES is to be set, it should be set before the initializing command

APSHELL.

APLINES is used by the APSTART, STAGEOUT and APWRAP scripts.

Examples: APLINES=100000

Default: 10000

2.2.7 APMESSAGES

Normally the APSHELL scripts print only important messages; individual commands within each
script are not echoed as they arc cxcculcd. When APMESSAGES=VERBOSE all commands exe­
cuted within each script are echoed. Tliis can produce a very busy standard output file, but it is
sometimes useful in debugging a scripl.

APMESSAGES can be redefined as often as necessary during an execution to toggle the command
echoing.

APMESSAGES is uscd by all llic APSHELL .scripts.

Examples: APMESSAGES=VERBOSE
APMESSAGES=

-7-

Default: null

2.2.8 APOUTPUT

This is the name of a file to which carriage-eonirollcd output is to be written. The user is respon­
sible for directing such output to the file when he issues UNICOS commands; the APSHELL
scripts XDIF3D, XFTU, XREBUS3, etc. automatically route printed oulput from production
codes to that file. At the completion of the job the file will automatically be directed to the desti­
nation specified by Uie APDEST shell variable, subject lo how the user has set APFETCH.

To be fully effective this parameter should be set before the initialization call to APSHELL .

APOUTPUT is used by APSTART, APWRAP, and the production-code scripts X D I F 3 D ,
XVARI3D, etc.

Examples: APOUTPUT=output
APOUTPUT=fileout

Default: carriage-coniiolicd oulput is written to the standard oulput file.

2.2.9 APPOSTPATH

APPOSTPATH defines extensions lo llic scnicli pulli that are lo be concatenated al the end of the
search path and that are to remain there lor the duration of the job.

If the shell variable APPOSTPATH is lo be set, it must be set tiefore the initializing command
APSHELL. To add additional paths (and then to remove them) during execution use the
POSTPATH scrip!

APPOSTPATH is used by die APSTARTand POSTPATH scripts.

Examples: APPOSTPATH=$HOME/niy_scripts
APPOSTPATH=$HOME/my_scripts: /nl/bnnnnn/his_scripts

Default: null

2.2.10 APPREPATH

APPREPATH defines extensions to Ihc search path that are lo be concatenated at the front of the
search path and dial are to remain there for Ihc duration of the job.

If the shell variable APPREPATH is lo IK sci, it must Ix; set before the initializing command
APSHELL. To add additional paths (and llion lo remove them) during execution use the
PREPATH script.

APPREPATH is uscd by the APSTARTand PREPATH scripts.

Examples: APPREPATH-$HOME/niy_scripts
APPREPATH=$HOME/nny_scripts : / n l / b n n n n n / h i s _ s c r i p t s

Default; null

- 8 -

2.2.11 APTEST

APTEST is a shell variable used by the APSHELL scripts as an en-or-condition sentinel for the
IFBOMB script. Users may occasionally want to clear a previous en-or condition by selling this
variable to null.

APTEST is read by the IFBOMB script but may be set by any of die APSHELL scripts.

Example: A P T E S T = (to clear error-condiUon sentinel)

Default: null

2.3 User APSHELL Scripts

A number of scripts have been written which are of general interest to both die shell programmer and
to users. The latter will find these advantageous since they largely eliminate the need for extensive
knowledge of die UNIX command language. In order to use any of these scripts, the APSHELL script
must be executed first, and the command that executes it must be preceded by a "dot-space" (see below).
None of the other commands require the "dot-space".

2.3.1 . APSHELL

This is an initialization call. It must come first, or none of the other scripts will be available to
the job. Users should define most of the sheU variables described in the previous section before
invoking APSHELL.

This is a one-line script residing in the public directory / u s r / p u b l i c . It, in turn, executes
the script APSTART which, among other functions, sets default values for the shell variables
defmed in the previous section, changes to a SCRATCH directory, starts the accounting utility,
modifies the search path to make other APSHELL scripis accessible, sets a trap that causes the
script APWRAP to be executed when the job terminates, invokes uscproute, and invokes the
APHEADER script to print the header page showing shell variable definitions. The APWRAP
script prints an accounting report (including a breakdown of costs by charge category provided by
thescript / n l / b 2 7 4 8 4 / j o b c o s t) and disposes the oulput file defined by APOUTPUT.

There are no arguments.

2.3.2 APECHO "strlngl" ••strlng2" "strlng3" ...

This script echos the input strings beginning each siring on a new line. There may be any number
of strings supplied as arguments. The strings are echoed both to the standard oulput, and to
APOUTPUT if it exists.

Examples; APECHO " T h i s i s l i n e 1" " T h i s i s l i n e 2"
APECHO "

If no arguments are provided, APECHO does nothing.

-9 -

2.3.3 IFBOMB command

This script checks to see if there was an error eidier in the execution of the immediately preceding
UNICOS command or in die execution of any eariier APSHELL script. If there was no error, the
script does nothing. If an error is detected, and if there is no argument, the script invokes the
APWRAP script and Uiejobtemiinates. If an error is detected, and there is an argument,
IFBOMB executes the argument as a command and lets the job continue.

Errors in the immediately preceding UNICOS command are detected by testing the shell variable
$?; if an crtor is detected this way the shell variable APTEST is set equal to "previous com­
mand". Errors from eariier APSHELL scripts are caught by testing APTEST. At any time the
user may reset APTEST to null to avoid detonating later IFBOMBS.

The argument can be any UNICOS or APSHELL command.

Examples; IFBOMB
IFBOMB STASHFILE STACK
IFBOMB banner 'hey stupid'
IFBOMB banner 'file gone' » output
IFBOMB APTEST=
IFBOMB STAGEIN CARDS filel B21006.INPUT
IFBOMB STAGEIN CARDS file2 B21006.INPUT \

"'DISP=(OLD,DELETE)'"
IFBOMB echo first IFBOMB test

Note the use of single and double quotes in the arguments of some of the examples. The syntax
of commands whose arguments include commands with arguments is not always straightforward.

2.3.4 POSTLIB Ibmfilel lbmfile2 Ibmfilen

This script permits users to supplement the default production load module library with modules
from user-specified libraries. It acquires UNICOS ar module libraries from the IBM disks and
places them in the directory $SCRATCH/xpostlib that is added to the end of the search path.
Modules in earlier named ibmfiles preempt modules in succeeding ibmfiles. Modules acquired
with additional POSTLIB commands (if any) will replace identically named modules existing in
$SCRATCH/xpostlib, but the posiuonof $ SCRATCH/xpost l i b will not be changed in
the search path. If there are no arguments, the script removes all modules from the x p o s t l i b
directory.

This script along with P R E L I B , PREPATH and POSTPATH change the search path when they
are called. Specifying POSTLIB with no arguments empties the x p o s t l i b directory, but
does not remove the directory from the search path. Specifying PREPATH or POSTPATH with
no arguments will restore die search path to its original state. The original search path includes a
directory /nl/b05432/cccc_modlib containing production load modules.

Example; POSTLIB C116. T E S T . P O S T L I B I CI16 .TEST. P0STLIB2

orequivalenlly,

POSTLIB C116.CRAY.TEST.P0STLIB2
POSTLIB CII6.CRAY.TEST.POSTLIBI

10-

2.3.5 POSTPATH pathi path2 pathn

This script permits users to modify the search path during execution by adding directories at the
end. Any number of arguments is allowed. If there are no arguments, the script removes path
names appended by eariier calls (but docs not remove padis defined by the shell variables
APPREPATH and APPOSTPATH) The original search paOi includes a directory
/nIA)05432/cccc_modlib containing production load modules.

The scripts PREPATH, PRELIB, and POSTLIB also change the search path.

Example: POSTPATH / n l / b 5 4 3 2 1 / d e b u g / n l / b l 2 3 4 5 / o t h e r

2.3.6 PRELIB Ibmfilel Ibmflle2 Ibmfilen

This script permits users to preempt the default production load module directory with modules
from user-specified libraries. It acquires UNICOS ar module libraries from the IBM disks and
places them in the directory $sCRATCH/xprelib that is added to the front of the search path. '
Modules in earlier named ibmfiles preempt modules in succeeding ibmfiles. Modules acquired
with additional PRELIB commands (if any) will replace identically named modules existing in
$SCRATCH/xprel ib, but the position of $ SCRATCH/xprelib will not be changed in die
search path. If there arc no arguments, the script removes all modules from the x p r e l i b direc- \
toiy.

This script along with POSTLIB, PREPATH and POSTPATH change the search path when i
they are called. Specifying P R E L I B with no arguments empties the x p r e l i b directory, but •,
does not remove the directory from the search paUi. Specifying PREPATH or POSTPATH with ;
no arguments will restore the search path to its original state. i

Example; P R E L I B C I 1 6 . T E S T . P R E L I B I C I I 6 . T E S T . P R E L I B 2 -'i

I

or equivalently,
i

PRELIB C116.CRAY.TEST.PRE;LIB2 1
PRELIB C116.CRAY.TEST.PRELIBl j

I
2.3.7 PREPATH pathi path2 pathn j

]
This script permits users to modify Ihe search path during execution by adding directories at the i
front. Any number of arguments is allowed. If there are no arguments, die script removes path
names appended by earlier calls (but does not remove paths defined by die shell variables !
APPREPATH and APPOSTPATH) The original search path includes a directory
/nlA)05432/cccc_modIib containing production load modules.

The scripts POSTPATH, PRELIB, and POSTLIB also change die search path.

Examples: PREPATH / n l / b 5 4 3 2 1 / d e b u g / n l / b l 2 3 4 5 / o t h e r

11-

2.3.8 STAGEIN type crayfile Ibmfile Jcl jcl jcl

If the file c r a y f i l e does not already exist, this script brings il lo the Cray from the IBM disks.
STAGEIN basically perfonms die same function as die UNICOS "acquire" command. The user
specifies die type of file via a t y p e keyword in the first argument and die Cray and IBM file
names in die second and Uiird arguments. The fourth, fifth, and sixdi arguments are optional
patches of JCL; if diere are no JCL arguments, die script assumes diat die IBM file is
DISP=(OLD,KEEP).

If c r a y f i l e already exists STAGEIN does nothing. If c r a y f i l e does not already exist,
and the first attempt to fetch a file fails, die script tries a second time. When
type-LOADMODULE the script marks the load module executable.

When type=MODLIB the script extracts all members from an ar library into die directory speci­
fied in c r a y f i l e . If the specified directory docs not exist, STAGEIN will create it.

type One of the following choices;

CARDS for BCD card-image data sets.
SEGLIB for relocatable object code.
CRAYBINARY for Cray-binary-format data sets.
IBMBINARY for IBM-binary-fomiat data sets.
LOADMODULE for executable load modules.
ARLIB for ar load module libraries.
MODLIB for extracting all members from an ar library into the

directory specified in crayfile

c r a y f i l e The name of the file on the Cray, or a directory name if type=MODLIB.

i b m f i l e The name of the dataset on the IBM disks.

j c l

Examples:

Optional JCL for die IBM file. Thedefaultis DISP= (OLD, KEEP)
if no JCL input is provided.

STAGEIN CARDS program.f B2I006.FORTRAN
STAGEIN IBMBINARY data B21006.BINARY.DATA \

'(OLD,DELETE)'
STAGEIN CARDS input 'B2I006.DECKS(GAMSORA)'
STAGEIN SEGLIB seglib.a B21006.CRAY.SEGLIB
STAGEIN MODLIB $SCRATCH/xprelib B21006.CRAY.SEGLIB
STAGEIN LOADMODULE ftu CI16.CRAY.FTU.MODLIB
STAGEIN IBMBINARY STACK B21006.TEST.ISOTXS
STAGEIN SEGLIB seglib.a B21006.TEST.SEGLIB \

'DISP=OLD' 'VOL-SER-TEM401' 'UNIT-TEMP'
STAGEIN SEGLIB seglib.a B21006.TEST.SEGLIB 'DISP=OLD,\
VOL-SER=TEM401,UNIT=TEMP'

Note dial the three JCL patches may be presented in any fonn which is recognizable as Unix
strings. The last two examples illustrate two ways diat the same information can be presented.
The last example provides all the JCL informadon in one string whereas die next to llic Uisl
example uses three JCL input strings.

- 1 2 -

2.3.9 STAGEOUT type crayfile Ibmfile |cl |cl Jcl

This script sends a variety of types of files from die Cray to the IBM disks for storage or to hard-
copy output devices. The user specifies die type of file via a t y p e keyword in die first argu­
ment and the Cray and IBM fde names in die second and Uiird arguments. The fourth, fifth and
sixth arguments are oprional patches of JCL; if there arc only three arguments die script assumes
that disk files are DISP= (OLD, KEEP) . When t y p e is OUTPUT or POSTSCRIPT the
third argument is interpreted as the destination (see the examples below); in these two cases if die
third argument is omitted die destination is picked up from APDEST or APLASERWRITER,
respectively.

If a previously executed APSHELL script has set an error condition (i.e. if the shell variable
APTEST is not null) STAGEOUT will not send a file to die IBM side of the system. Users can
override this behavior by setting APTEST to null before invoking STAGEOUT.

For (NEW, CATLG) files users must supply all die IBM JCL required to establish die file on the
IBM disks. The one exception to diis rule is the DCB parameter; if one of die j c l patches con­
tains only the string DCB, then STAGEOUT will supply appropriate, default DCB parameters
(see the examples below).

t y p e One of die following choices:

CARDS for BCD card-image data sets.
SEGLIB for relocatable object code.
CRAYBINARY for Cray-binary-format data sets.
IBMBINARY for IBM-binary-format data sets.
LOADMODULE for executable load modules.
ARLIB for ar load module libraries.
POSTSCRIPT for LaserWriter output.
METAFI LE for Issco metafiles.
OUTP UT for printed output or microfiche.

c r a y f i l e The name of die file on die Cray.

ibmf i 1 e The name of the dataset on die IBM disks.

j c l Optional JCL for the IBM file. The defauU is (OLD, KEEP).

Examples; STAGEOOT CARDS program, f B2100 6. FORTRAN

STAGEOUT IBMBINARY data B21006.BINARY.DATA
STAGEOOT POSTSCRIPT fort.98
STAGEOUT OUTPUT output '(ANLVM,FICHE)'
STAGEOUT OUTPUT output VMFICHE
STAGEOUT LOADMODULE dif3d B21006.UDOIT.MODLIB \

•DISP=(NEW,CATLG),UNIT=TEMP' \
'SPACE=(TRK,(60,5),RLSE)' \
•DCB'

STAGEOUT METAFILE popfil B21006.CHA09.POPFIL \
'DISP=(NEW,CATLG),UNIT=TEMP' \
•SPACE=(TRK,(10,10),RLSE)' \

'DCB'
STAGEOUT CARDS fort.7 B21006.CHA09.PUNFIL \

'DISP=(NEW,CATLG),UNIT=TEMP,SPACE=(TRK,(5,1),RLSE)' \

'DCB'

-13-

STAGEOUT CARDS file2 B21006.INPUT \
•DISP-(NEW,CATLG),UNIT=TEMP' \
•SPACE=(TRK,(1,1),RLSE)' \
'DCB=(RECFM-FB,LRECL=80,BLKSIZE=3200)'

STAGEOUT OUTPUT output '(ANLVM,B21006)'
STAGEOUT OUTPUT output RADS12
STAGEOUT OUTPUT output PRO,FLASH=LINE

Note diat when one uses STAGEOUT to an ANLVM node (e.g. (ANLVM,B21006) or
(ANLVM,FICHE)), it is not possible to make die oulput fetchable widi APFETCH=YES.
APFETCH=YES does operate on files sent to ANLOS (e.g. RADS12, PRO, and VMFICHE).

2.3.10 STASHFILE crayfile

This script will create a temporary directory with a name unique to die current job
($ SHORT/st a sh /nnnn .xmp, where nnnn is die job's NQS job number) and will save a file
c r a y f i l e in that directory. Multiple calls to STASHFILE wid save additional files, all in ihc
same directory. All SSHORT files will remain on the Cray disks for 24 hours from their last
access. A line on the APSHELL header page tells users whether or not they have a "stash" direc­
tory created in a previous job. STASHFILE can be used with IFBOMB to save valuable files
in case of trouble (see the example below).

Examples: STASHFILE RTFLUX
IFBOMB STASHFILE STACK

2.3.11 XDIF3D crayfile, XFTU crayfile, XREBUS3 crayfile, XTWODANT crayfile, XVIM
crayfile, XVARI3D crayfile

The scripts XDIF3D c r a y f i l e , XFTU c r a y f i l e , XREBUS3 c r a y f i l e ,
XTWODANT c r a y f i l e , and XVARI3D c r a y f i l e normally execute the production ver­
sions of the appropriate code. The single argument defines the file containing the BCD input for
the code; if there is no argument die code will take ils input from the file defined by AP INPUT.
The output of the code is directed to the file defined by APOUTPUT . Unix style oulput redirec­
tion must not be done on modular scripis as discussed in Chapter 4. Auxiliary oulput may also be
created on the file fort. 10. Symbolic dump output from abnormal terminations is generated on
the file sysudump. In ease of an abnormal termination, some of these scripts execute
STASHFILE for die potentially available files;

Code

DIF3D
REBUS3
TWODANT
VARI3D
VIM
RETALLY
BANDIT
FTU

Files Saved

RTFLUX, ATFLUX (version 1)
RFILES,STACK
RTFLUX, ATFLUX (version 1)
RTFLUX, ATFLUX (versions 1-3)
none
none
none
none

The search path always includes die directory /nl/b0.S432/cccc_modlib containing all modules
from the production library. Scripis PRELIB, POSTLIB, PREPATH, and POSTPATH may be

14-

used to modify die search path prior to a call to one of the module execution scripts described in
this section.

2.4 Shell Programmer Shell Varibles

A number of "shell variables" are available which are primarily of interest to the shell programmer.

2.4.1 APTEMP, APTEMP2, APTEMPX, APTEMPS, APTEMPS2, APTEMPS5, etc.

These are temporary variables used widiin many of die APSHELL scripts. They are not intended
to be used to communicate between scripts. Programmers writing scripts diat invoke APSHELL
scripts should take some care in defining temporary variables. For example, the production-code
scripts (e.g. XDIF3D, XFTU, etc.) use a temporary variable named APTEMPX so as not to
conflict widi the APTEMPS variable that is set if diey invoke STAGEIN.

2.5 Shell Programmer APSHELL Scripts

A number of scripts have been written which are primarily of interest to the shell programmer and
which are used in conjunction with scripts used for execution of the EP production codes such as DIF3D,
REBUS3, etc.

2.5.1 APHEADER

This script collects and prints the header information to standard output and to the file identified
by APOUTPUT. The header information includes job name and numbers, user-specified time
and memory limits, the contents of a number of shell variables, and a list of APSHELL scripts.
APHEADER is invoked by the APSTART script and has no arguments.

%

2.5.2 APSTART file

This script is invoked by the APSHELL script residing in die public directory / u s r / p u b l i c .
AP START changes directory to SSCRATCH, sets die initial values for a number of APSHELL
sheU variables, adds the directories /nl/b21006/apshell and /nl/b05432/cccc_modlib to the search
path, issues the scpreroute (uscproute imder UNICOS 4.0), starts the accounting deamon (jad in
UNICOS 3.0, ja in UNICOS 4.0), invokes APHEADER to display the header page on die output
files, sets a trap so that APWRAP is executed on exits, defines shell functions for all the
APSHELL scripts to assure diat they are all executed in die same shell, and lists die contents of
the user's /nl and /si directories and subdirectories. The optional argument is the name of any
script that the programmer wishes to be executed at the end of APSTART.

2.5.3 APWRAP code

This script is invoked automaticaUy on exit because of a trap set in APSTART . It prints
accounting information to standard output and to die file identified by APOUTPUT, disposes
any APOUTPUT file to its intended destination, and cleans out die SSCRATCH directory. The
optional argument is a condition code diat is used as the argument in a final call to exit.

- 1 5 -

Chapter 3

THE FILE TRANSFER UTILITY, FTU

3.1 Introduction

The availability of onsile Cray, IBM, and VAX computers as well as telecommunication access lo
offsile CDC and Cray computers has created an atmosphere in which users are more and more interested
in making use of binary data files created on one computer as input for codes which arc to be cxcculcd on
anodier computer. Common examples arc the use of post-processing codes which massage data gener­
ated by a large production-type calculation, or the u.se of cross section files generated on one computer
with production codes to tie run on another compuler. Postprocessing codes have been uscd on the IBM
computers for many yearx. Users who now arc running large production jobs on die more cost effective
Cray compuler arc often not interested in expending the effort to convert the ancillary codes for use on
the Cray, but would rather prefer lo continue running ilie inexpensive post-processing job on die IBM
computer using the binary files which were wrillcii on Ihc Cray computer ISOTXS microsopic cross sec­
tion datasets [3] which have been generated on ihe IHM computers are now required on the Cray com­
puter for a number of production codes. Similarly, in the future since the MC^-2 code [4| is being
implemented on the VAX compuler, VAX gcncialcd ISOTXS (lat;i.scls may also be uscd for the Cray pro­
duction jobs. These considerations have niollvalcd die (Icvcliipnicni of the File Transfer Utility, FTU,
which will afford portability for a variety of binary (hilasols from one lypc of computer to anodicr.

3.2 FTU User Infortnatlon

FTU, programmed in Fortran 77, is intended to provide binary file formal conversion between the
Cray and the IBM, VAX, and CDC computers', as well as the ability lo copy datasets, without fomiat
conversion, from a file on which anumberof datasets have been "slacked". This latter capability is sim­
ilar 10 dial provided by die READSTAK code (5] on the IBM computers which is employed to copy
dalalscts from a so-called STACK file which has been written during a REBUS-3 [6] job. In addition to
the new formal conversion capability, FTU processes 11 additional datasets not addressed by
READSTAK, and can provide BCD cquivalcnis and edits for each of the datasets. The BCD fomiai
affords easy portability between computer syslcms. and ilic dalasct edits provide a useful debugging tool
for code development activities or for users who would like to verify the contents of a binary dataset.

3.2.1 Files Processed by FTU

Table 1 lists die datasets which arc currcnily pioccs.scd by FPU. The datasets DLAYXS, FIXSRC,
GEODST, ISOTXS, NDXSRF, PWDINT, RAFLIJX, RTFLUX, RZFLUX, AND ZNATDN are standard
CCCC interface files [31. The emphasized damsels are llio.se which are processed by the READSTAK

' FTU has nol as ycl iKklrcs.scd Ibniial convcisiori lor CDC fdiinal dalasels iiorconvcniion Irom BCDlo
binary formal.

- 16-

http://llio.se

code.

AAFLUX

D I S F A C

LABELS
[tAFLUX

Table 1

AD JANG

DLAYXS

NAFLUX

RTFLUX

. Datasets Processed by FTU

ANGSRC

D 3 E D I T

NDXSRF
RZFLUX

ATFLUX

F I X S R C

HHFLUX
S F E D I T

COMPXS

GEODST
PMATRX

ZNATDN

DltUU^G

ISOTXS
PWDINT

3.2.2 FTU Input Conventions

The input to FTU is specified using free field format style and contains

file_name record_number output_format input_format precision

y/here file_rmme corresponds to one of the datasets in Table 1, record_number indicates the record on the
STACK file where the file is located, oufpurj'ormar may be CRAY, IBM, VAX, CDC, or BCD corre­
sponding to the binary file formats on the Cray, IBM, VAX or CDC computers, or to BCD format,
input_format may be CRAY, IBM, VAX, or CDC, again corresponding to die file formats on those
computers, and precision is SINGLE or DOUBLE correpsonding to 4-byle or 8-byte word length for
conversion from Cray to IBM. As implemented on the Cray, output Jormat is defaulted to IBM and
input_forrruxt is defaulted to CRAY. The input sentinel precision is pertinent at this time only for the
FIXSRC dataset which is required in bodi single- and double-precision versions on die IBM computers.
If this field is left blank, single precision conversion is assumed consistent with die CCCC specification
for diat dataset. [3]. The fde containing dataset/i/£_name is always given die name STACK whedier or
not it contains more than one of die datasets in Table 1.

«
On die Cray computer, if inpurjbrmaf is odier dian CRAY, then output Jormat m\if,lbe CRAY.

When implemented on computers odier dian die Cray, FTU only provides the capability of copying die
datasets from a STACK file, widiout format conversion, or generating die equivalent BCD form for die
datasets. Thus, for example on die IBM computer, input Jormat may only be IBM and outputjormat
may only be IBM or BCD. Note that FTU may be used to convert IBM to VAX format, e.g., by first
converting from IBM to Cray foniiat, and dien from Cray to VAX fonnat using die Cray implementation
of FTU.

If record_number is supplied as negative, FTU will provide an edit of Uie file being created. The
dataset edits as well as the structure of die BCD equivalents for die datasets are quite terse so that die user
will have to be familiar wiUi a description of die file being processed in order to follow die FTU edit. The
datasets specified by die CCCC are documented in Ref [3]. The other datasets in Table 1 which are pro­
cessed by FTU are documented in die Wylbur accessible partitioned dataset
B2100 6 . FILES#f i l e n a m e where f i l e n a m e corresponds to any of the datasets in Table 1. When
converting individual datasets (diat is when die STACK file contains only one dataset), record_number
would be 1 or-1 .

- 1 7 -

3.2.3 Cray Execution of FTU

Figure 3 shows a typical Cray execuliori of FTl I in which an IBM fonnat RTFLUX dalasct [3] is
converted to a Cray format vcreion, and the IK-W Ciay daiascl is ilicn converted lo BCD equivalent format.
The first step also provides an edit of the dalasct as il is Ixiing processed since record_numhcr is negative.
The input uses the APSHELL conventions asspccilicil in lire cliapicr "APSHELL, UNICOS Scripts for
Batch Computing" on page 2.

//TORTFLUX JOB CLASS=C,REGION=300K,TIME=2,MSGCLASS=W
// EXEC CRAY
//SYSUTl DD *
user=
QSUB -r TRTFLUX
QSUB -q day
QSUB -IT 15

-IM lOOOKw QSUB
QSUB -eo
QSUB

«
set -vxS
APOUTPUT=output
APDEST-rad3l2
APBANNER=trtfIux
APLINES=10000
. APSHELL
STAGEIN IBMBINARY STACK ClJ 6.]BM.TEST.RTFLUX
IFBOMB
cat > input «EOF
RTFLUX -1 CRAY IBM

EOF
XFTU
cp RTFLUX DUMMYl
cp RTFLUX STACK
STAGEOUT CFLAYBINARY DUMMYl your .choice . dsname \

'DISP=(NEW,CATLG),UNIT=TEMP,SPACE=(TRK,(10,3),RLSE)' \
'DCB'

cat > input <<EOF
RTFLUX 1 BCD CRAY

EOF
XFTU
STAGEOUT CARDS RTFLUX your.choice.dsname \

'DISP= (NEW, CATLG) , UN1T--=TEMP, SPACE^(TRK, (10, 3) ,RLSE) ' \
'DCB'

/*

Figure .?. Typical Cray FIU .loh ConvcKirig IBM lo Cray Format

18-

Users should remember that if more than one file is to be accessed using STAGEIN, a rm STACK
command must first be specified before subscqucnl S T A G E I N S since STAGEIN does nothing if the
Cray file already exists.

Figure 4 shows a typical Cray execution of Fll I in which a VAX fonnat ISOTXS dataset [3] is con­
verted to a Cray fonnat version. The formal for Iclching die VAX binary file differs notcably from dial
required for fetching IBM binary files.

QSUB
QSUB
QSUB
QSUB
QSUB
QSUB

-r VAXCRAY
-q day
-IT 15
-IM lOOOKw
-eo

//VAXCRAY JOB CLASS=C,REGION=300K,TIME=2,MSGCLASS=W

// EXEC CRAY
//SYSUTl DD *
user=

set -vxS
APOUTPUT=output
APDEST=rad3l2
APBANNER=vaxcray
APLINES=10000
. APSHELL
fetch STACK -mVG -fTB \

-t'anIvg"BXXXXX password":
IFBOMB
cat » output «EOF
ISOTXS I CRAY VAX

EOF ^
XFTU
STAGEOUT CRAYBINARY ISOTXS your.choice.dsname \

'DISP=(NEW,CATLG),UNIT=TEMP,SPACE=(TRK,(10,3),RLSE)' \
'DCB'

/*

Figure 4. Typical Cray FVU Job Converting VAX to Cray Format

:CCII6:(BXXXXXJYOUR CHOICE.DAT:1'

3.2.4 IBM Execution of FTU

A new catalogued procedure APPROC is also now available in the system library
$SYS1 .USERPROC. AP which is uscd lor executing ITU on Ihc IBM computers. Users should include
PROC = AP on t h e on the //*MAIN card lo access lliis catalogued procedure. APPROC follows
die Fortran 77 convention of using a file name i-a(hcr llian FTXXFOON lor the DDNAME. A typical IBM
FTU job which reads a STACK file and prepares binary PWDINT and ZNATDN datasets, and a BCD

I'J-

equivalent of the RTFLUX dataset is shown hclow in Figure 5 as an example of using die new procedure.
Each of die datasets being processed is docirnicrilcd in Rd. |3 | . The PWDINT, RTFLUX, and ZNATDN
datasets arc located respectively at record numbers ??.7, I IK and 13 on the STACK file. The ZNATDN
dataset is to be edited as it is being copied Innii die .SI'Af'K lile since Ihc record_number is negative.

The APPROC catalogued procedure is listed in Appendix A. Nolc dial when overwriting DD cards,
the supplied cards must be in the order in which ilrcy appear in die PROC. just as is required when using
catalogued procedures which have numbered DD cards. The PATH symbolic parameter has been
defaulledto STP021 corrcspondingtothc DlF3Dcodc |2|. In Figure 5, PATHwassetto FTUandlhc
library from which die FTU code was obtained was specified using die PRELIB symbolic parameter.

//TORTFLUX JOB CLASS=W,REGION=1500
//•MAIN LINES=50,PROC=AP
//•FORMAT PR,DDNAME=,DEST=RADS12
//*FOFiMAT PR,DDNAME=SYSUDUMP,DEST
//•FORMAT PR,DDNAME=FT10F001,DEST
// EXEC APPROC,PATH=FTU,
// PRELIB='C116.B05317.REBUS3.TEST
//FTlOFOOl DD DUMMY
//PWDINT DD DSN=your.choice.dsname
// V0L=SER-TEM401,SPACE'(TRK, (10,
// DCB=(RECFM=VBS,LRECL=X,BLKSIZE
//• BINARY DATASET PWDINT
//RTFLUX DD DSN-your . clioi cn .dsname
// VOL=SER=TEM401,SPACE-(THK, (10
// DCB=(RECFM=FB,LRECL=80, BLKSIZE
//* BCD DATASET RTFLUX
//STACK DD DSN=exi3ting.STACK.data
//• STACK DATASET CONTAINING FILES
//ZNATDN DD DSN=your.choice.dsname
// VOL=SER=TEM40I,SPACE=(TRK,(10,
// DCB=(RECFM=VBS,LRECL=X, BLKSIZE
//• BINARY DATASET ZNATDN
//SYSIN DD •

PWDINT 227 IBM IBM
RTFLUX 118 BCD IBM
ZNATDN -13 IBM IBM

Figures. Typical IBM FTU Job

PRO,FLASH=LINE
ANLVM.FICHE

MODLIB'

,DISP=(NEW,CATLG),UNIT=TEMP,
3) ,RLSE) ,
6136)

DISP=(NEW,CATLG),UNIT-TEMP,
3),RLSE),
3200)

set,DISP=SHR
PWDINT, RTFLUX, AND ZNATDN
DISP-(NEW,CATLG),UNIT=TEMP,
3) ,RLSE) ,
6136)

3.2.5 VAX Execution of FTU

Figure 6 shows a typical VAX COMMAND lile lor ITU. If Ihe input data in file INPUT. DAT ;1
contains

ISOTXS -1 BCD VAX,

-20-

the binary ISOTXS dataset [3] in file 1 TESTISOTXS. DAT; 1 would be converted to BCD fonn. The
COMMAND file in Figure 6 presumes thai Ihc FTU code is available in an FTU . EXE file.

SSET VERIFY
$SET DEFAULT [BXXXXX]
$ASSIGN OUTPUT. LIS SYSJOUTI^riT
$0N ERROR THEN GOTO BOMBl
$TYPE INPUT.DAT;I
S A S S I G N I N P U T . D A T ; I SYSSINPI I l '

$COPY T E S T _ I S O T X S . D A T ; 1 ni'ACK . DAT; I

$RUN FTU

SDELETE STACK.DAT;1
S D I R

SCHARGES
$DEASSIGN SYSSOUTPUT
$0N ERROR THEN GOTO B0MB2
SDELETE OUTPUT.LIS;*
$DELETE STACK.DAT;I
SEXIT
$BOMBl:
$0N ERROR THEN GOTO B0MB2
SCHARGES
SDEASSIGN SYSSOUTPUT
SCONVERT/APPEND OUTPUT. LIS FTU. LIS
$BOMB2:
SDELETE OUTPUT.LIS;*
SDELETE STACK.DAT;I

Figure 6. Typical VAX FTU COMMAND File

3.2.6 FTU Edits

Figure 7 shows an example of die edit generated by FTU for a trivial NDXSRF dataset [3]. When a
record consists of several different arrays, each array is displayed separately starting on a new line along
with die record identifier heading such as RECORD ID, RECORD 20, etc. The file identification
record is referenced as RECORD ID.

•21 -

NDXSRF 6/20/88 1436.4

1

6 1 6 6 6 0

11 12 13 14 15 16

11 12 13 14 15 16

E D I T OF F I L E NDXSRF

RECORD ID

REC0IU3 ID

RECORD ID

RECORD 2D

RECORD 2D

RECORD 2D

O.OOOOE+00 O.OOOOE+00 O.OOOOEinn O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO

RECORD 2D

l .OOOOE + 02 I .OOOOE+02 l.OOOOf.+ O? 1 . 0 0 0 0 E + 0 2 1 . 0 0 0 0 E + 0 2 l .OOOOE+02

RECORD 2D

RECORD 2D

RECORD 2D

RECORD 2D

RECOFID 3D

1 . 4 3 0 4 E + 0 3 1 . 5 2 0 9 E + 0 3 1 . 9 5 5 5 E + 0 3 l . O O O O E - 0 6 2 . n 2 8 E + 0 2 1 . 0 8 6 4 E + 0 2

RECORD 3D

l .OOOOE+00 I .OOOOE+00 l .OOOOE+00 l .OOOOE+00 l .OOOOE+00 l.OOOOE+CO

RECOFUD 3D

I I I 1 1 1

Figure 7. R U Cerieralcil liilil ol Daiascl NDXSRF

0 0 0 0 0 0

6 0 0 0

1 2 3 4 5 6

1 2 3 4 5 6

3.2.7 FTU BCD Conversion

Figure 8 shows an cxiunpic of die BCD equivalent form for die NDXSRF dataset shown in Figure 7.
As is the case for the dataset edits, when a record consists of .several different arrays, each array is dis­
played separately starting on a new line along with the record identifier such as ID, 2D, etc. The file
identification record is referenced as ID . Obviously, if Ihe BCD equivalent for a d.iiasct is generaicd.

• 2 2 -

the user may simply list that file as an edit of Ihc dalasct rather than having FTU generate an edit of the
dataset.

ID
ID
ID
2D
2D
2D

2D

2D
2D
2D
2D
3D

3D

3D

NDXSRF 6 / 2 0 / 8 8 1 4 3 6 . 4
I
6 I

I I 12
I I 12
O.OOOOOOOOE+00
O.OOOOOOOOE+00
0.IO00OOO0E+O3
O.lOOOOOOOE+03

0 0
6 0
1 2
I 2

0 . I 4 3 0 4 I 2 4 E + 0 4
0 . I 0 8 6 3 9 9 5 E + 0 3
O.IOOOOOOOE+01
O.IOOOOOOOE+01

I I

6 6

1 3 14

1 3 14

O.OOOOOOOOE+00

0 . 1 0 0 0 0 0 0 0 E 1 0 3

0 0

0 0

3 4

3 4

0 . 1 5 2 0 9 4 4 6 E 1 0 4

O.IOOOOOOOEHOl

1 1

6 0

15
15

O.OOOOOOOOE+00

0 . l O O O O O O O E + 0 3

0 0

5 6

5 6

(1 . 1 9 5 5 4 9 9 3 E + 0 4

(1. lOOOnoOOElOl

1 1

16
16
O.OOOOOOOOE+OO

O. lOOOOOOOE+03

0 . 1 0 0 0 0 0 0 3 E - 0 5

O.IOOOOOOOE+OI

Figure 8. BCD Equivalent for Dalasct NDXSRF

0

0

0

0

OOOOO

10000

21727

lOOOO

3.3 Programming Information

FTU has been coded using Fortran 77 conventions and is organized into subroutines, each of which
is named for the file which is being processed togclhcr with a numberof general utility subroutines.
Table 2 lists the FTU subroutines widi a brief description of the function of each.

The various Cray utility routines utilized by FTU for data format conversion are listed in Table 3
along with a brief description of the function ol each. The detailed description of the calling sequence for
each as well as implementation information is given in Ref (7]. The utilities with names beginning with
US are concerned with IBM format conversion, those lx;ginning with VX widi VAX format conversion,
and the FP and INT routines with CDC format conversion.

The programming conventions u.scd in writing FTU make extensive use of special "keyword" com­
ment cards surrounding machinc-depcndeni Fortran canls. The coding between a Iceyword pair is selec­
tively activated or deactivated by a simple preprocessing Forlran program which places a blank or the
letter C in column 1 of the bracketed card images 11()|. As a simple example, the following code frag­
ment is appropriate for short word machines, and could be converted for long word machines by deacti­
vating the GSW and activating the CLW keywords.

• 2 3 -

Subprogram

MAIN
SELECT

FILEID

AAFLUX
ADJANG
ANGSRC
ATFLUX
COMPXS
DIRANG
DISFAC
DLAYXS
D3EDIT
FIXSRC
GEODST
ISOTXS
LABELS
NAFLUX
NDXSRF
NHFLUX
PMATRX
PWDINT
RAFLUX
RTFLUX
RZFLUX
SFEDIT
ZNATDN
CNVRTC

CNVRTI

CNVRTR

BCDC
BCD I
BCDRl
BCDR2
COPYFI

PRECIS

VSRIN
VSROUT

Table 2. FTU Subroutines

Function

Main driver for FTU
Reads the user input specifications, positions file
STACK, and reads, converts, and writes the file
identification record for the dataset being processed
Converts the file identification record and writes this
record for the dataset being processed
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes
Processes

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

AAFLUX
ADJANG
ANGSRC
ATFLUX
COMPXS
DIRANG
DISFAC
DLAYXS
D3EDIT
FIXSRC
GEODST
ISOTXS
LABELS
NAFLUX
NDXSFIF
NHFLUX
PMATRX
PWDINT
[RAFLUX
RTFLUX
RZFLUX
SFEDIT
ZNATDN

dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset
dataset

Converts character data to character data for the specified
format
Converts
format

.nteger numbers to integer numbers for the specified

Converts floating point numbers to long or short word
floating point data for the specified format
Converts character binary records into BCD equivalent data
Converts integer binary records into BCD equivalent data
Converts singl e precision binary records to BCD equivalent data
Converts double precision binary records to BCD equivalent data
Reads, converts, and
type: all

writes records which are of uniform
integer, all floating point, or all character data

Checks datasets on short word length machines to determine
word length
Reads VAX segmented binary records
Writes VAX segmented binary records

-24-

Table 3. Cray Format Conversion Utility Routines used by F T U

USCCTC Converts IBM EBCDIC data to ASCII data
USCCTI Converts ASCII data to lliM EBCDIC data
USDCTC Converts IBM 64-bit double-precision floating-point numbers to

Cray single-precision numbers
USICTC Converts IBM INTEGER*2 and 1NTEGER*4 numbers to Cray

64-bit integer numbers
USSCTC Converts IBM 32-bit singje-pcecision floating-point numbers to

Cray 64-bit single-precision numbers
USSCTI Converts Cray 64-bit single-precision floating-point

numbers to IBM 32-bit single-precision numbers
VXDCTC Converts VAX 64-bit D format numbers to Cray single-precision

numbers
VXDCTI Converts Cray 64-bit single-precision floating-point

numbers to VAX D format double-precision numbers
VXSCTC Converts VAX 32-bit single-precision floating-point numbers

to Cray 64-bit single-precision numbers
VXSCTI Converts Cray 64-bit single-precision floating-point

numbers to VAX F format single-precision numbers
VXICTC Converts VAX INTEGER*2 or INTEGER*4 numbers to Cray

64-bit integers
VXICTI Converts Cray 64-bit integers to VAX INTEGER*2 or

INTEGER*4 numbers
FP6064 Converts CDC 60-bit single-precision floating-point

numbers to Cray 64-bit si iK^le-precision numbers
FP6460 Converts Cray 64-bit single-precision floating-point

numbers to CDC 60-bit- s i iiq le-f)reci-si.on numbers
INT60 64 Converts CDC 60-bit integer.T Lo Cray 64-bit integers
INT6460 Converts Cray 64-bit inteqers to CDC 60-bit integers

CSW

DOUBLE PRECISION A, B
CSW
CLW
C REAL A,B
CLW

Note diat further comments concerning the use of keyword comment cards can be found in the next
chapter.

Due to die word length differences between the Cray and the IBM or VAX computers as well as the
special nature of VAX segmented records (91, special I/O routines arc required by FTU to accomplish the
data transfer. The Cray utilities READP, WRITEP, and WRITE [71 are used to read files which were
written on die IBM or VAX computers, and lo wrilt: tiles which arc to be read on the VAX computer.
READP and WRITEP provide the ability to read and write partial records, and WRITE is used lo write
end-of-record marks for VAX fonnat files. Sirbniuliries VSROUT and VSRIN [8] arc uscd lo add and

•2.V

remove, respectively die extra segment control bytes required VAX segmented records [9]. IBM format
files are written using ordinary Fortran WRITE statements.

3.4 FTU Limitations

FTU is designed to be portable to Cray, IBM, VAX, and CDC computers and has been implemented
on die Cray X-MP under Unicos, IBM 3033 under MVS, and VAX 8700 under VMS.

When miming on the Cray computer under Unicos, FTU pcnmits binary data to be converted lo the
formal required by IBM, VAX, and CDC computers, and binary data formats which were written on these
computers to be convened to Cray fonnat conventions. FTU has been tested for binary file formal con­
version between die Cray and IBM systems for all of die datasets .specified in Table 1 on page 17.
Conversion of only the binary ISOTXS dataset formal has been tested between the Cray and VAX sys­
tems.

When mnning on computer? odier dian die Cray, FTU does not provide binary file format conver­
sion but does provide the option of generating a BCD equivalent form for the various datasets.

FTU provides the ability to copy binary files without formal conversion from a file on which a
number of datasets have been "stacked" on any of die computers.

FTU has not as yet been implemented on a CDC system nor has testing of binary format conversion
between the Cray and CDC systems tx:en undertaken.

• 2 6 -

Chapter 4

A MODULAR PROGRAMMING SYSTEM FOR ENGINEERING PHYSICS
DIVISION CODES

4.1 Introduction

Current Engineering Physics production codes exist in a modular environment on the IBM system
[10]. In such an environment major computational application programs are constructed using a collec­
tion of modules coupled together via a driver module (path-driver) and interface files. The path-driver
serially invokes other modules via a call to LINK (an IBM assembler routine). LINK permits argument
passing and an arbitrary, but nonrecursive, nesting of modules. The environment also permits special
utility modules (marked REUSable) to be permanenUy resident in memory. These special modules may
be LINKed by all other modules and provide useful data communication and synchronization functions.

The flexibility and economic advantage experienced with the current Engineering Physics modular
system on the IBM 3033 motivates the development of a Fortran 77 based modular system whose archi­
tecture is as machine independent as possible. This modular system uses a path-driver module to manage
the serial execution of application modules. Flexibility arises from module independence. Changes lo a
single module are immediately available to all path-drivers invoking that module. The ability to preempt
production module libraries with alternate module libraries is a convenient and economic tool dial pro­
vides specialized applications and simplifies code maintainence and development. This flexibility
increases fUe space requirements and, on systems that require file staging, staging costs. Modular system
storage overhead arises from the system routines loaded with each module regardless of its size. Storage
oveitiead for a comparable collection of standalone codes arises from the common set of building block
modules loaded with each code.

The remainder of this chapter describes a Fortran 77 modular system implemented on a CRAY
X-MP (UNICOS, CFT77), an IBM 3033 (MVS, FORTVS) and a VAX 8700 (VMS, FORT77).

4.2 Functional Requirements for a Fortran 77 based fi/lodular System

The following functional requirements are needed by a modular system:

1. At least one level of Fortran modules must be callable from a Fortran padi-driver module.

2. Communication between modules must be via interface files; argument lists are not allowed.

3. Output from all modules should be synchronized (i.e. appear in chronological order).

4. Debugging capabilities comparable to Uiose available for standalone codes are desirable.

5. An implementation diat avoids or minimizes custom assembler code and features available on only
one machine is desirable for code portability.

-27-

Requirements (1) and (2) minimize die machine-dependent features needed to implement a modular
system. Requirement (3) is obvious and requirement (4) is expected in any robust implementation. They
are mentioned to emphasize the fact diat machine-dependent coding may be required to meet these goals.
Though not essential for modular systems, the portability requirement (5) has proved highly successful
for exporting Engineering Physics Division codes lo different computers.

4.3 Implementation Overview

The modular system is comprised of Fortran 77 programs which fall into one of two functional cat­
egories, padi-driver modules and application modules. A path-driver module controls the order (padi) in
which modules are called. Some drivers (e.g. REBUS-3) contain elaborate logic, others (e.g. D1F3D)
contain litde or no path-dependent logic. A utility subroutine LINKMD is called by the path-driver to
link to application modules.

All data communication between modules must be via interface files to improve code pxirtability.
Application codes typically require several interface files. The file name MODCOM together with log­
ical unit number 1 is reserved for a special "system" interface file that passes essential "system" data (eg
current page number) between modules. The utility subroutine MSYNCW and its entry MSYNCR syn­
chronize die path driver and application modules by respectively writing and reading "system" data on
MODCOM whenever execution control changes hands.

The two utility routines LINKMD and MSYNCW isolate the machine-dependent aspects of die mod­
ular system. LINKMD which must be called only by a path-driver module performs several functions. It
links a module (and invokes debug commands if needed), it synchronizes "system" data, and il ensures
the continuity of printed output. Two module names, M_INIT and M_END, are reserved for control sen­
tinels and do not correspond to actual modules. The padi-driver must initialize the modular system by
calling LINKMD with module name M_INIT. Upon completion of the padi-driver a final LINKMD call
widi module name M_END is required to wrapup the modular system.

System synchronization calls on behalf of the path-driver module are made from subroutine
LINKMD. It calls MSYNCW prior to linking a module, and it calls MSYNCR just after die application
module exits. Upon entry, each applications module must immediately call MSYNCR to complete the
system synchronization. A call to MSYNCW just before exit from an application module reinstates die
current system synchronization data on MODCOM. MSYNCW and MSYNCR require a single sentinel
argument to indicate the calling module's identity (i.e. 0 indicates a path-driver, 1 indicates an application
module).

Chronologically ordered printed output from all modules is ensured by subroutines MSYNtlW,
LINKMD and FINOUT. Two printed output files (units 6 and 10) are supported to accomodate
Engineering Physics Division codes that normally use two output sU'eams. The default eoruiections for
units 6 and 10 must be overridden in some systems (e.g. UNICOS and VMS) to achieve oulput conti­
nuity. The third utility subroutine FINOUT performs machine-dependent tasks (if needed) that flush the
path-driver output files just prior to padi-driver termination. FINOUT is always called from LINKMD
and may also be called from an error handling routine just prior to a program controlled abnormal exit.
FINOUT uses the common block named MODFLG.

Examples of a path-driver and an applications module illustrating this modular system implementa­
tion are in Figure 9 and in Figure 10. Details of the implementation are explained in die sections dial
follow.

-28-

CDECK MODDRV
CF77

CF77
CF77-
C
CF77-
CF66-
C
CF66-

C
C
C

C
C
C
C
C

C
C
C

O
O

O

PROGF^AM MODDRV

SW

IMPLICIT DOUBLE PFIECISION (A-H,0-Z)
SW
SW
IMPLICIT REAL'S (A-H,0-Z)

SW

COMMON /lOPUT/ NIN, NOUT, N0UT2

SET PRINTED OUTPUT FILE UNIT NUMBERS

CALL LINKMD ('M INIT ')

END PATH DRIVER INITIALIZATION

ARGONNE EP CODES NORMALLY EMPLOY SCAN AND STUFF MODULES

CALL LINKl^ ('SCAN ')
CALL LINKMD ('STUFF ')

NOW CALL APPLICATION MODULES (PATH LOGIC MAY APPEAR HERE ALSO).

CALL LINKMD ('MODI ')
CALL LINKMD ("M0D2 ')

PATH DRIVER WRAPUP (Last Statement in path driver)

CALL LINKMD ('M_END ')
STOP
END •

Figure 9. Simple Path-Driver Module in a Modular System

4.4 Synchronization of Printed Output

Subroutine MSYNCR and entry MSYNCW must be called at Uie beginning and end of each applications
module (including "dummy" UDOIT modules), respectively, to obtain chronologically ordered printed
output from path driver modules and applications modules.

•29-

CDECK MODI
CRAY-MOD

PROGRAM MODI
CRAY-MOD
C VMS-MOD
C PROGRAM MODI
C VMS-MOD
CIBM-MOD
C SUBROUTINE MODI
CIBM-MOD
CSA
C SUBROUTINE MODI
CSA
CF77-SW
C IMPLICIT DOUBLE PRECISION (A-H,0-Z)
CF77-SW
CF66-SW
C IMPLICIT REAL*8 (A-H,0-Z)
CF66-SW

COMMON /lOPUT/ NIN, NOUT, N0UT2
CALL MSYNCR (I)

MODULE APPLICATION CODING BEGINS HERE

APPLICATION MODULE CODE ENDS HERE

CALL MSYNCW (1)

RETURN
CSA
C
CSA
CIBM-MOD
C RETUiyj
CIBM-MOD

END

Figure 10. Simple Applications Module in a Modular System

4.4.1 Sytichronlzallon of Printed Output In the UNICOS System

All printed output in die UNICOS implementation ultimately appears on two files, $APOUTPUT
(see Chapter 2) and f o r t . 10. As each module is linked its stdout (unit 6) is redirected and concat­
enated to $APOUTPUT; unit lOiscormccted to f o r t . 10 . After an applications module exits
LINKMD concatenates the current contents of f o r t .10 to f o r t 10 where it remains until FINOUT
ultimately renames f o r t l O to fort.lOjust prior to the final exit from the path driver module.

• 3 0 -

The shell variable APOUTPUT in LINKMD is consistent with the APSHELL variable of the same
name. If APOUTPUT is not defined, the modular system uses a default name of o u t p u t . The
APSHELL environment is not required to run the modular system.

In order to synchronize die printed output from die padi-driver and application modules, LINKMD
connects (via an OPEN statement) two temporary file names p a t h 6 and p a t h l O to units 6 and 10 in
die padi driver. An ENDFILE statement deletes die contents of each file. The padi driver must not
attempt to connect unit 6 lo $ APOUTPUT if chronologically ordered output is to be maintained. Prior to
invoking an application module, LINKMD disconnects p a t h 6 and p a t h l O . Upon entry to an appli­
cation module, a call to MSYNCR connects unit 10 to f o r t . 10 and clears f o r t . 10 . Unit 6 is
already connected to stdout by die module linking logic. Then MSYNCR copies any path driver output
on p a t h 6 a n d p a t h l O to units 6 (stdout) and 10 (f o r t . 1 0) , respectively. Unit 1 is used for tem­
porary connections to p a t h 6 and p a t h l O . After MSYNCR exits die application module continues
printing on imits 6 and 10. When die application module exits, LfNKMD concatenates the current con­
tents of f o r t . 10 to f o r t l O . Then p a t h 6 and p a t h l O are reconnected to units 6 and 10,
respectively, and cleared via an ENDFILE statement. Output created after die last application module has
exited is copied to die corresponding output files by subroutine FINOUT prior to final exit from the path
driver. FINOUT is also called by subroutine ERROR prior to an abnormal tennination. In aU cases
FINOUT ultimately renames f o r t l O to f o r t .10 just prior to exit.

4.4.2 Synchronization of Printed Output In the VAX/VMS Systetn

The printed output in the VAX/VMS system is synchronized by overriding the default connections to
units 6 and 10 (FOR006 and FOROIO, respectively) widi OPEN statements Uiat include die specification
ACCESS=APPEND. Appropriate OPEN and CLOSE statements in LINKMD and MSYNCR before and
after module entrance and exit cause output to be concatenated on the same file in chronological order.

4.4.3 Synchronization of Printed Output on the IBM MVS System

Output synchronization occurs using the default cormections FT06F001 and FTlOFOOl for units 6
and 10, respectively. One side effect that is not yet understood occurs when a symbolic dump is triggered
from a called module. The normal symbolic dump appears to be^followed by a second symbolic dump
that repeats the subset of routines that are part of the path driver module.

4.5 Module Linking

Fortran 77 has no provision for linking independent program modules. Consequentiy this machine-
dependent function is isolated in LINKMD, a Fortran 77 subroutine widi one CHARACTER*8 argument.
A padi-driver serially links a module by calling LINKMD wiUi die desired upper case module name as
die argument. Module names M_INIT and M_END are reserved for control purposes. The first call to
LINKMD must use the name M_1NIT to initialize the modular system. During diis initialization call
variables NOUT and NOUT2 in common block lOPUT are set to unit numbers 6 and 10, respectively.
Calling LINKMD with module name M_END signals diat an exit from die path-driver is imminent and
triggers modular system termination tasks. On systems where symbolic dumps are not automatically gen­
erated, LINKMD is also used to isolate machine-dependent invocations of symbolic debugging com­
mands that are triggered when an application module terminates abnormally.

- 3 1 -

4.5.1 Module Linking In the UNICOS System

By convention module names in UNICOS must be lower case. Consequentiy, LINKMD calls sub­
routine SHFTLO to convert the module name in its argument from upper case to lower case and store it in
die CHARAL'lbR*8 variable named MODULE. Modules are linked by calling the system function
ISHELL [7]. A single argument of type character is used to pass a command string to a UNICOS bourne
shell (a "child" of die shell in which the current module is executing). The current process (i.e. die padi
driver module) waits until the shell has completed executing the command string and receives die exit
status in the function value relumed by ISHELL (supplying an & after the command sent to ISHELL per­
mits asynchronous module execution, but this usage is not supported in the current modular implementa­
tion). Calls to ISHELL from LINKMD and FINOUT include combinations of the following UNICOS
command string examples below and may also include the Fortran 77 operator 7/' which concatenates
character variables and character string literals.

$APTRACE

Optional user supplied shell commands may be put into shell variable APTRACE for diagnostic
purposes (e.g. see Figure 13). Commands in APTRACE are executed prior to every module invo­
cation if APTRACE has been exported (export typically done by applications scripts).

MODULE // '» $ {APOUTPUT:-output) '

The MODULE command invokes the desired module. The curtcnl implementation redirects and
concatenates stdout from MODULE to $AP0UTPUT (default is o u t p u t). The shell variables
APTRACE and APOUTPUT are available to die shell spawned by ISHELL only if they have been
exported prior to executing die path driver module. The applications scripts like XD1F3D include
the appropriate export commands.

' c a t f o r t . 1 0 » f o r t l O '

Upon exit from MODULE, the printed output for logical unit 10 (default filename f o r t . 10) is
concatenated to f o r t l O from f o r t . 10 .

'debug -B -d 20,5,5 -s "hash ' // MODULE // ' ; hash I grep ' //
MODULE // ' I cut -f3~ » sysudump ; '

The debug command concatenates symbolic dump oulput onto a file named " sysudump" using
the file named " c o r e " that is generated when a module leiminates abnormally. The hash com­
mands are used to determine the search padi directory where MODULE is found. LINKMD
invokes debug whenever ISHELL returns a nonzero return code following an application module
invocation.

' c a t pa th6 » $(APOUTPUT:-output} ; c a t pa th lO » f o r t I C '

Just prior to die final exit from a path driver append pa th6 to SAPOUTPUT and append
pa th lO to f o r t l O .

•rm p a t h 6 pa th lO ; mv f o r t l O f o r t . 1 0 '

Just prior to the final exit from FINOUT remove auxiliary oulput files pa th6 and pa th IO,
then rename f o r t l O to f o r t . 10.

-32-

4.5.2 Module Linking In the VAX/VMS System

Module linking is accomplished by writing a VMS DCL command file to invoke die desired module
then spawning a subtask that executes the command file. The DCL text required to execute a module is
$RUN MODULE where MODULE denotes the name of the module to be executed. LfNKMD creates the
appropriate command file text and passes it to subroutine VSPAWN which writes the command file
(PATH_SPAWN.DAT) and spawns a subtask by calling die LIB$SPAWN nin-time system function. A
logical unit number for the command file is obtained by system function LIBSGET and later released by
LIBSFREE.

4.5.3 Module Linking In the IBM MVS System

Load modules in the IBM MVS system are linked from LINKMD by calling assembler routine LINK [1).
The 8 character module name is passed as the only argument to LINK. Although LINK permits subrou­
tine arguments in the call, the modular system machinery does not permit or use it.

4.6 Local Code Conversion Considerations for the New Modular System

The rudiments of the modular system are illustrated by the simple padi-driver module Usted in Figure 9
on page 29 and the simple apphcations module listed in Figure 10 on page 30.

4.6.1 CONVTCD Keyword Changes

Several changes to our current coding practices [10] are required by die new modular implementa­
tion. The REUSable modules SYSOOl diru SYS005 have been eliminated. The keyword table for the
CONVTCD utility now includes a new keyword CMOD to designate a modular implementation. CMOD
and CSA are mutually exclusive keywords. As a consequence the past practice of using CANL to denote
IBM modular must now be changed to CMOD-F66. CANL must now be qualified widi CIBM, CUNC or
CVMS when code modifications only apply to a particular Argonne computer.

The keyword sentinels now required by CONVTCD for die' four possible modular systems are:

1. IBM66IMVS

CSW CILV CENT CIBM CANL CF66 CDYN CMOD

2. IBM77IMVS

CSW CILV CENT CIBM CANL CF77 CDYN CMOD

3. CRAYIUNICOS

CLW CILV CENT CRAY CANL CF77 CDYN CMOD CVEC CSEG CUNC

4. VAXIVMS

CSW CILV CENT CVMS CANL CF77 CDYN CMOD

• 3 3 -

4.6.2 Path-Driver Changes

All Fortran 77 path-driver modules should include PROGRAM statements for unique identification
in an object code library. Module linking calls must be made via a call to subroutine LINKMD which has
one argument, a CHARACTER'S variable containing an upper case module name. As illustrated in
Figure 9 on page 29 each path-driver initializes the modular system by calling LINKMD (with argument
'M_INIT'). The initialization sets NOUT and N0UT2 to 6 and 10, respectively. NOUT is the logical unit
number for the primary printed output stream, NOUT2 is the logical unit number for the secondary oulpul
stream, and NIN is die logical unit number for the standard input file. A call to LINKMD (with argument
'M_END') is required just before the final exit from the path-driver. M_INIT and M_END are reserved
words that are used as sentinels to control modular system initialization and wrapup. The modules SCAN
and STUFF must now be linked from the padi driver module. IMor practice required direct calls to
SCAN and STUFF dummy drivers diat linked to modules SYSOOl or SYS002.

4.6.3 Applications Module Changes

A keyword change is also required in the driving subprogram of each applications module.
Depending on die system and the type of implementation (modular or standalone) the driving subprogram
of a module must begin with eidier a SUBROUTINE statement or a PRCXjRAM statement. A corre­
sponding appropriate termination statement (RETURN or the absence of a RETURN) is also required in
die driving subprogram. As illustrated in Figure 10 on page 30, UNICOS and VAX VMS modular sys­
tems require a PROGRAM statement. All other implementations currentiy require a SUBROUTINE
statement.

Subroutine calls to MSYNCR and MSYNCW must also appear in die driver of every applications
module including dummy UDOIT modules. MSYNCR should be the first executable statement and
MSYNCW should be the last statement executed just before exit from the module. Because MSYNCR
initializes TIMER and die common block variables (N0UT=6 and NOUT2=10) in /lOPUT/ and
(K0UT=6 and KOUT2=10) in /PTITLE/, applications modules no longer need perform these initializa­
tions. The variable NIN is initialized from the path driver and passed to applications modules via die
MODCOM system interface fde. Output is hardwired to units 6 and 10 in MSYNCR to reduce the poten­
tial for printed output loss in die event of an abnormal termination. Applications modules can still tempo­
rarily disable output to units 6 or 10 by setting die appropriate local common block variables to 0 after die
call to MSYNCR.

4.6.4 Changes to Utility Subroutines In the Existing Libraries

ARCBCD

Member ARCBCD contains source for bodi the SCAN and STUfT modules and was changed to
include appropriate PROGRAM, SUBROUTINE and RETURN statements in die SCAN and
STUFF routines. Calls to subroutines MSYNCW and MSYNCR were also added. The modules
SYSOOl and SYS002 were eliminated. Shared data retained in memory by SYSOOl is now
obtained by MSYNCR from MODCOM.

DOPC, DRED. LUNREF AND MAKDDN

Logical unit number 1 has been added to die list of reserved special purpo.se unit numbers. It is
used by LINKMD and MSYNCTR for temporary connection to MODCOM while reading and
writing "system" synchronization data and for temporary connection to p a t h 6 and pathlO
while synchronizing printed output on die UNICOS implementation. CONVTCD keywords

-34-

CF77-SA were changed to CF77 in order to permit dynamic logical unit number allocation widi
modular and standalone implementations. Special coding bracketted by CF77-ANL was inacti­
vated by comment cards since the CANL keyword no longer denotes die IBM modular implemen­
tation. Two hybrid code systems TWODANT and DPT are affected by diis change.

ERROR

A call to die new utility routine HNOUT was added to ERROR to empty and delete die path driver
output files in the event a fatal error exit is detected by subroutine ERROR when it is called from
the padi driver.

UNES AND PGCNTR

Logic was added to KJCNTR to permit reinitialization of die common block CPGCNT used by
LINES and PGCNTR. The reinitialization is done via calls to PGCNTR (widi IENTRY=3) from
MSYNCR whenever a module is entered or a padi-driver is reentered. Common block CPGCNT
and die argument list to PGCNTR were revised as a consequence. Reusable module SYSOCM is
eliminated. Shared data for CPGCNT is now obtained by MSYNCR from MODCOM.

SEEK

Logic associated widi die SEEK initialization (SEEK option 3) was revised to permit SEEK reini­
tialization whenever a module was entered or the path-driver reentered upon exit from a module.
Reinitialization is triggered by a SEEK option 3 call whenever it is accompanied by a dataset name
of RESEEK in argument 1. Reusable module SYS003 is eliminated. Shared data formeriy held by
SYS003 is obtained by MSYNCR from MODCOM.

TIMER

A number of timing functions previously surrounded by CANL CONVTCD keywords were
changed to CANL-IBM to permit the more general usage of CANL. A subroutine SECOND for
IBM F77 modular systems was added to the TIMER librarian module. The reusable module
SYS005 is eUminated for IBM F77 modular implementations. The new subroutine SECOND uses
the TLEFT assembler routine to compute elapsed time. An entry TSYNC was added to TIMER to
synchronize timing data when separate clocks are used inthe padi-driver and applications modules.

4.7 Modular Library Maintenance and Applications

Summarized in ttiis section will be typical examples of how modular libraries are maintained for the
systems currentiy supported.

4.7.1 Modular Library Maintenance on the UNICOS System

The Cray UNICOS modular production hbraries stored on die IBM disks are:

Cne.CRAY.SYSLIB

C116.CRAY.SEGLIB

C116.CRAY.OVERLAY

- 3 5 -

Cne.CRAY.SYSLIB and Cl 16.CRAY.SEGLIB are object libraries managed via die UNICOS b i d
command. Executable load modules are created from these object libraries using the UNICOS s e g l d r
command. Overiayed modules require a s e g l d r directives file to specify the overiay tree slmcture.
Each directives file is stored in Cl 16.CRAY.0VERLAY, a PDS library file on die IBM disks with a
member name ending widi TR (e.g. GNIP4CTR) (see Figure 11).

The UNICOS command a r is used to manage libraries of UNICOS load modules when diey are
stored on the IBM disks, in a manner similar to the way the UNICOS b i d command is used to manage
object code libraries. The heavily used Engineering Physics production modules reside permanently on
die Cray as files in the directory /nl/b05432/cccc_modlib. The directory is included in the search path by
APSTART (see Chapter 2) so that it is available to all module execution scripts when using APSHELL.
Figure 12 is a script fragment that compiles and links a typical load module (e.g. GNIP4C) and replaces
die load module in a module library.

TREE
D4(D4CI,D4C2,D4C3,D4C4,D4C5)
ENDTREE
SEGMENT=D4
M0DULES»HMG4C
SEGMENT=D4C1
MODULES=OVLI
SEGMENT=D4C2
M0DULES=0VL2
SEGMENT-D4C3
M0DULES=0VL3
SEGMENT=D4C4
M0DULES-0VL4
SEGMENT-D4C5
M0DULES=0VL5
ENDSEG

Figure II. Typical segldr Overiay Tree Directives File

4.7.2 Modular Applications

Figure 13 is a UNICOS script fragment illustrating typical production use of load module libraries.
The PRELIB and POSTLIB commands may be used to include additional load module libraries from Uie
IBM disks to die search path. The PREPATH and POSTPATH commands may be used to include addi­
tional existing UNICOS directories to die search path. As noted in die command descriptions for
PRELIB and POSTLIB in Chapter 2, the order in which module libraries and directories are specified
indicates their precedence. For example, to override a dummy UDOITn module in
C116.CRAY.MODLIB wiUi a UDOITn from an alternate library Cl 16.CRAY.UDOIT.MODLIB, a user
must specify

PRELIB C116.CRAY.UDOIT.MODLIB

36-

Following the completion of die load module script (XDIF3D) die search path remains in its modi­
fied state unless restored by appropriate PRELIB, POSTLIB, PREPATH or POSTPATH commands.

STAGEIN CATJDS source.f B202 45 . FORTRAN . SOURCE
STAGEIN CABDS segtree B20245.CRAY.MODULAR.OVERLAY(GNIP4CTR)
STAGEIN SEGLIB syslib.a CII6.CRAY.MODULAR.SYSLIB
STAGEIN SEGLIB seglib.a CII6 .CFIAY.MODULAR. SEGLIB

truncate directives before sequence numbers in cols. 73-80
mv segtree segtreeI
cut -cI-72 segtreel > segtree; rm segtreel

cft77 -e DIxs source.f
IFBOMB echo cft77_errors
cat source.I » output
rm source.1 source.f

bid rv seglib.a source.o » output
IFBOMB
bid tv seglib.a ; rm source.o

STAGEOUT SEGLIB seglib.a C116.CRAY.MODULAR.SEGLIB /
'UNIT=PERM, SPACE-(CYL, (14,1)) , DISP= (NEW, CATLG) ' 'DCB'

IFBOMB

segldr -o gnip4c -e GNIP4C -M output -i segtree \
-D "ECHO=ON;CASE=MIXED;MAP=ADDRESS;USX=WARNING;" \
-1 ./seglib.a,./syslib.a,SANLUTIL \
/dev/null >> output

IFBOMB
chmod a+rx gnip4c

%
replace gnip4c module in the production module directory
cp gnip4c /nl/b05432/cccc_modlib
IFBOMB
Is -1 /nl/b05432/cccc_modlib

replace gnip4c module in a library named modlib; list its directory
•STAGEIN ARLIB modlib CI16.CRAY.MODULAR.MODLIB

#ar ru modlib gnip4c
#IFBOMB
#ar tv modlib
fSTAGEOUT ARLIB modlib Cl16.CRAY.MODULAR.MODLIB

Figure 12. UNICOS Script Fragment for Updating a MODLIB

• 3 7 -

Specify list of ar module libraries located on the IBM disk farm
to be PRELIBed or POSTLIBed (if needed) into the search path.

PRELIB CI16.CRAY.DEBUG.MODLIB
PRELIB CI16.CRAY.UDOIT.MODLIB
POSTLIB CI16.CRAY.GRAPHIC.MODLIB

STAGEIN CARDS input B20245.JOBX.INPUT
IFBOMB

Following line is optional. It is useful to trace module execution
while debugging. Other commands could also be supplied here.
APTFiACE=' set -vxS '

Do not redirect output for a path driver module. Printed output is
ultimately directed to SAPOUTPUT (default is output) and fort.10.
Symbolic dump output appears on the sysudump file.
Execute the APSHELL script XDIF3D which invokes the DIF3D code.
XDIF3D exports the shell variables APOUTPUT and APTRACE.
XDIF3D input

Concatenate symbolic dump trace (if any) and fort.10 to SAPOUTPUT
[-r sysudump] iS, cat sysudump » SAPOUTPUT
cat fort.10 » SAPOUTPUT
IFBOMB

Figure 13. Sample Production Job Script Fragment for UNICOS Modular System

•38-

ACKNOWLEDGEMENTS

The audiors would particularly like to thank Jeff Doak of Cray Research for help in understanding
the Cray/Unix system, and Alan Hinds for his assistance in implementing the modular system. Many
other people from the Computing and Telecommunications Division also contributed Uicir advise and
assistance to this work.

- 3 9 -

REFERENCES

1. L. C. Just, H. Henryson, II, A. S. Kennedy, S. D. Sparck. B. J. Toppel, and P. M. Walker, "The
System Aspects and Interface Data Sets of die Argonne Reactor Computation (ARC) System",
ANL-7711, Argonne National Laboratory (April 1971).

2. K. L. Derstine, "DIF3D: A Code to Solve One-, Two-, and Three- Dimensional Finite-Difference
Diffusion Theory Problems", ANL-82-64, Argonne National Laboratory (April 1984).

3. R. Douglas O'Dell, "Standard Interface Files and Procedures for Reactor Physics Codes, Version
IV", UC-32, Los Alamos National Laboratory (September 1977).

4. H. Henryson II, B. J. Toppel, and C. G. Stenberg," MC^-2 : A Code to Calculate Fast Neutron
Spectra and Multigroup Cross Sections", ANL-8144, Argonne National Laboratory (June 1976).

5. B. J. Toppel, Private Communication.

6. B.J. Toppel, "A Users Guide for die REBUS-3 Fuel Cycle Analysis Capability", ANL-83-2,
Argonne National Laboratory (March 1983).

7. "Programmers's Library Reference Manual", SR-0113C, Cray X-MP and Cray-1 Computer
Systems, Cray Research,Inc. (June 1987).

8. Jeff Doak, Private Communication.

9. "VAX/VMS User's Manual", Digital Equipment Corporation (April 1986).

10. C. H. Adams, K. L. Derstine, H. Henryson II, R. P. Hosteny, and B. J. Toppel, "The Utility
Subroutine Package used by Applied Physics Division Export Codes", ANL-83-3, Argonne
National Laboratory (April 1983).

-40-

Appendix A

IBM CATALOGUED PROCEDURE APPROC

The APPROC catalogued procedure shown in Figure 14 represents a generic procedure intended for \
use with any of the EP production codes which have been modified to make use of Fortran 77 conven- j
tions. In particular, various symbolic parameters are provided for the various datasets with which die user j
may be concerned.]

-41 -

//APPROC PROC AACYL=5,AADSP-'(.DELETE)',AAFLUX='SAAFLUX',
// ATCYL=5,ATDSP='(,DELETE)',
// ATFLUX-'SATFLUX',ATVOL=,DEST='*',DEST2=F,DMPDEST-F,
// BLKTYP=CYL,CMPDSP='(,DELETE)',COMPXS='SCOMPXS',
// CXSCYL=3,DIFDSP='{,DELETE)',D1F3D-'SDIF3D',
// DLADSP='{,DELETE)',DLAYXS='5DLAYXS',D3DSP='(,DELETE)',
// D3EDIT='SD3EDIT',FDCCYL=20,FLXCYL=1,
// GEODSP='(.DELETE)',GEODST='SGEODST',HALFTRK=6136,
// ISOCYL=I,ISODSP='(MOD,KEEP)',ISOVOL-,
// ISOTXS-'SISOTXS',LABDSP='(,DELETE)',LABELS-'4LABELS',
// MODEDCB-'(RECFM=F,BLKSIZE=23220)',
// MODLIBl-'SYSl.DUMMYLIB',
// M0DLIB2-'C1I6.CCCC.MODLIB',
// NACYL=5,NADSP='(.DELETE)',NAFLUX-'SNAFLUX',NAVOL-,
// NDXDSP-'(.DELETE)',NDXSRF-'SNDXSRF'.
// NHCYL=5,NHDSP-'(.DELETE)'.
// NHFLUX-'SNHFLUX'.NHVOL-.PATH-'STP02I'.
// PMADSP-'(.DELETE)'.PMATRX-'SPMATRX'.
// POSTLIB-'SYSl.DUMMYLIB'.PRELIB-'SYSl.DUMMYLIB',
// PSICYL=5,PSUCYL-3.PWDDSP-'(.DELETE)'.QRTRTRK=30 64,
// RACYL-5.RADSP-'(.DELETE)'.RAFLUX-'SRAFLUX'.REGN=IOOOK.
// RTCYL-5.RTDSP-'(.DELETE)'.RTFLUX-'SRTFLUX'.
// RTV0L-.T1MLIM-'(600.0)'.RZDSP-'(.DELETE)'.
// RZFLUX-'SR2FLUX'.SFDSP='(.DELETE)'.SFEDIT-'SSFEDIT',
// SRFCYL-12,STADSP-'(,DELETE)',STACK-'SSTACK',
// TWELTRK=I016,UNITS-BATCHDSK,UNITSCR-SASCR,
// XSISO-NULLFILE.XSIS02=NULLFILE,XSIVOL=.XSI2V0L-,
// ZNADSP-'(.DELETE)'.ZONCYL-l

//*
//* ***
//*
//* * CATALOGUED PROCEDURE FOR ENGINEERING PHYSICS DIVISION
//* * FORTRAN 77 CODES. **• 11/29/88 ***
//*
//* ***
//*
//* CYLINDER ALLOCATIONS ARE FOR 3330 DEVICES
//* IF OTHER DEVICES ARE USED CHANGE PROC PARAMETER
//* MODEDCB-(RECFM-F.BLKSIZE-XXXXXX) TO THE APPROPRIATE
//* BLOCK SIZE (13030 ON 3330. 19069 ON 3350. 23220 ON 3380).
//* NOTE THAT THE NUMBER OF TRACKS PER CYLINDER ON THESE
//* DEVICES IS 19 ON 3330, 30 ON 3350, AND 15 ON 3380.
//*
//* PARAMETER DEFAULT VALUE USAGE

//*
//* PATH STP02I PROGRAM NAME (EXEC)
//* TIMLIM (600.0) STEP TIME LIMIT (EXEC)

Figure 14. IBM Catalogued Procedure APPROC

-42-

//*
//*
//*
//*
/ / •

//*
//*
//*
//*
//*
//*
//*
//*
//•
//*
//*
//*
//*
//*
//••

//*
//*
//*
//*
//*
//*
//*
//*
//*
//•
//*
//••

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

REGN
MODLIBI
MODLIB2
PRELIB
POSTLIB
DEST
DEST2
DMPDEST
AACYL
ATCYL
AADSP
ATDSP
ATFLUX
ATVOL
CMPDSP
DIFDSP
DLADSP
D3DSP
GEODSP
ISOCYL
ISODSP
ISOTXS
ISOVOL
LABDSP
NADSP
NAFLUX
NAVOL
NDXDSP
NHCYL
NHDSP
NHFLUX
NHVOL
PMADSP
PWDDSP
RACYL
RTCYL
RTDSP
RTFLUX
RTVOL

SRFCYL
XSISO
XSIS02
XSIVOL
XSI2V0L

THE FOL
AND DCB

MODEDCB

lOOOK STEP REGION S
SYSl .DUMMYLIB .'£CC :-iD STIT 1
C116.CCCC.MODLI3 CCCC SYSTEM
SYSI.DUMMYLIB
SYSl.DUMMYLIB
*
F
F
5
5

(.DELETE)
(, DELETE)
SATFLUX

(, DELETE)
(, DELETE)
(, DELETE)
(, DELETE)
(,DELETE)
I
(MOD.KEEP)
SISOTXS

(, DELETE)
(, DELETE)
SNAFLUX

(.DELETE)
5
(, DELETE)
SNHFLUX

(, DELETE)
(.DELETE)
5
5
(.DELETE)
SRTFLUX

12
NULLFILE
NULLFILE

.'F. (iXEC)
B!V.I>.':Y (STErLIB)
ilBRARY (ETEPLIB)

FIRST STEP LIBRARV (STEP LIB)
LAST STEP LIBRARY (STEPIIF.)
OUTPUT DEST. (FT06)
OUIP'.'T DEtTIli/.TION (FTIO)
ROUTE DUMP TO FICHE (SYSUDUMP)
NO. OF CYL. FOR .'AFLUX
NO. OF CYL. F 3R ATFLUX
DISPOSITION Ot AAFLUX
DISPOSITION or AlFLUX
DS."< FOR DATASL. A^'FI.UX
VO.:.UME; FOR ATFLUX
DISPOSITION OF COMPXS

DISPOSITION OF D.ir3D
DISPOSITION OF DLAYXS
DISPOSITION OF D3I:DIT
DISPOSITION OF GEODST
NO. CYL. FOR ISOTXS
DISPOSITION OF ISOTXS
DSN FOR DATASET ."OTXS
VOLUME FOR ISOTXL
DISPOSITION OF LABELS
DISPOSITION OF NAFLUX
DSN FOR NAFLUX
VOLUME FOR NAFLUX
DISPOSITION OF NDXSRF
NO. OF CYL. FOR NHFLUX
DISPOSITION OF NHFLUX
DSN FOR NHFLUX
VOLUME FOR NHFLUX
DISPOSITION OF PMATRX
DISPOSITION OF PWDINT
NO. OF CYL. FOR RAFLUX
NO. OF CYL. FOR RTFLUX
DISPOSITION OF RTFL.IX
DSN FOR DATASET RTFLUX
VOLUME FOR RTFLUX
NO. OF CYL. FOR SURF. FLUXES
DSN FOR DATASET XS.ISO FILE I
DSN FOR DATASET XS.ISO FILE 2
VOLUME FOR XS.ISO FILE I
VOLUME FOR XS.ISO FILE 2

THE FOLLOWING NINE PARAMETERS DEFINE BLOCK ALLOCATIONS
AND DCB'S FOR AUXILIARY FLUX, FDCOEF AND ZONMAP DATASETS

MODEDCB (RECFM=F,BLKSIZE=23220) DCB FOR DIRECT ACCESS FILES

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

• 4 3 -

•Trarai

//* BLKTYP CYL ALLOCATION BY CYLINDERS
//* SEC 1 SECONDARY ALLOCATION ON DA DATASETS
//* FDCCYL 20 NO. OF CYL.S FOR FDCOEF DATASET
//* FLXCYL I NO. CYL. FOR 1 GROUP FLUX FILES
//* PSICYL 5 NO. CYL.S FOR FLUX DATASETS
//* PSUCYL 3 NO. CYL.S FOB ADJ. UPSCAT. FLUX
//* ZONCYL 1 NO. CYL.S FOR ZONMAP
//* CXSCYL 3 NO. CYL.S FOR CXSECT

//*
//• THE FOLLOWING SIX PARAMETERS DEFINE UNIT AND BLKSIZE FOR
//* A VARIETY OF DATASETS
//*
//* HALFTRK 6136 HALF TRACK BLOCKING
//* QRTRTRK 3064 QUARTER TRACK BLOCKING
//* TWELTRK 1016 TWELFTH TRACK BLOCKING
//* UNITS BATCHDSK GENERIC UNIT NAME
//* UNITSCR SASCR GENERIC UNIT NAME
//*
//* **
//*
//APPROC EXEC PGM=SPATH,TIME-STIMLIM.REGION=SREGN
//STEPLIB DD DSN-SPRELIB.DISP-SHR
// DD DSN-SMODLIBl.DISP-SHR
// DD DSN-SM0DLIB2.DISP-SHR
// DD DSN=SPOSTLIB.DISP-SHR
//*
//* SYSTEM DATASETS
//*
//FT04F00I DD UNIT=SASCR.SPACE-(TRK.(10.10))
//• DISSPLA SCRATCH FILE
//FT05F001 DD DDNAME-SYSIN
//* BCD INPUT.
//FT06F001 DD SYSOUT-SDEST.DCB=(RECFM=FBA,LRECL=133.BLKSIZE-1596)
//* PRINTED OUTPUT.
//FT08F001 DD DISP-SHR.DSN-SYSl.DISSPLA.DATA.LABEL-(,..IN)
//* DISSPLA FONT FILE
//FTlOFOOl DD DCB=(RECFM-FBA.LRECL=133.BLKSIZE=1596),SYS0UT=SDEST2
//* ALTEFUJATE PRINT FILE.
//FT61 DD DSN-SXSISO.DISP-SHR,UNIT-SUNITS,VOL=SER=SXSIVOL
//* ARC MICROSCOPIC ISOTOPE CROSS SECTION XS.ISO FILE I
//FT6IF002 DD DSN-SXSIS02.DISP-SHR.UNIT-SUNITS.V0L-SER-SXSI2V0L
//* ARC MICROSCOPIC ISOTOPE CROSS SECTION XS.ISO FILE 2
//FT62 DD DSN-*.FT61F002.DISP-SHR.VOL=REF-*.FT61F002
//* ARC MICROSCOPIC ISOTOPE CROSS SECTION XS.ISO FILE 2
//AAFLUX DD DSN-SAAFLUX.DISP-SAADSP.SPACE-(CYL.(SAACYL.I)).
// UNIT-SUNITS.VOL-SER-SATVOL.
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE=S HALFTRK)
//* CCCC ADJOINT ANGULAR FLUX DATASET.
//ADIF3D DD DSN=SSADIF3D.UNIT-SUNITSCR.SPACE=(TRK.(1.5)).

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

-44-

// DCB=(RECFM=FB,LSi'L-8 0.PiKf:IZF'^ 000)
//* 1,2 OR 3D DIFtUS'.ON 1.0DUx.L Di; .x JUNT .iCD DAT SET.
//ADJANG DD DSN=SADJANG.UNIT"SUWTTS, SPACE-»(CYL, (01, 1)) ,
// DCB'(RECFM=VBS,LRECL=X,BLKiIZE=SHALFTRK)
//* ADJOIMT ANGULAR FLUX DATASET.
//ANGSRC DD DSN=SANGSRC,UNIT-SUNITS,SPACE"(CYL, (01,1)),
// DCB-(RF.CFM-VBS LRECL- t, ELKSIZE-SHALFTRK)
//* ANGULAR iiOURCE COMPONENTS.
//AHMG4C DD DSN-S«AHMG4C,UNIT-SUNITSCR,SPACE-(TRK, (1,0)),
// DCB- (RECFM-FB. LRF.CT,--80, PLK;:;iZE=6"''01
//* CCCC HOMOGENIZATION KODULE DEPENDEMT BCD DATASET.
//Also DD DSN=S6AIS0.UNI1=SUNITSCR,SPACE-(CYL. (4.1)),
// DCB=(RECFM-FB.LRECL^'30.BLKSI2S=6000)
//* THE ISOTXS BCD DATASET.
//ALASIP3 DD DSN-SSALSIP3,UNIT=SUNITSCR,SPACE=(TRK, (3,1)),
// DCB=(RECFM=FB,LRECL '80,BL;<SIZE-60'J0)
//* THE LASIP-III BCD DATASET
//ANIP3 DD DSN=SSANIP3,UNIT-SUNITSCR,SPACE"(CYL. (1.1)) .
// DCB=(RECFM=FB,LRECL=8 0.BLKSIZE^eOOO)
//* THE ARC SYSTEM GENERAL NEUTRONICS BCD DATASET.
//ARC DD UNIT-SUNITSCR,SPACE=(CYL, (I,1)),
// DCB=(RECFM=FB,LRECL-8 0,BLKSIZE-6nC0;
//* ARC SYSTEM SPOOLED OUTPUT.
//ASUMMAR DD DSN=SASUMMAR, UNIT=SUNITSCR, SPACE= (TRK, (3, 1)) ,
// DCB=(RECFM-FB,LRECL=80,BLKSIZE=6000)
//* BCD INPUT DATASET FOR EDIT MODULE - SUMMARY
//ATFLUX DD DSN=SATFLUX,DISP-SATDSP,SPACE-(CYL. (6ATCYL, I)).
// UNIT=SUNITS.VOL=SER=SATVOL,
// DCB=(RECFM-VBS.LRECL-X.BLKSIZE=&HALFTRK)
//* CCCC ADJOINT FLUX INTERFACE DATASET.
//AUDOIT DD DSN-SAUDOIT.UNIT=SUNITSCR.SPACE=(TRK. (3.1)),
/ / DCB-(RECFM-VBS,LRECL=8 4,BLKSIZE-SQRTRTRK)
//* BCD INPUT DATASET FOR UDOIT MODULES.
//BCDSOB DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,pLKSIZE-800)
//* BCDSOB PUNCHED OUTPUT FOR LASIP3 CODE
//COMPXS DD DSN'=SCOMPXS,UNIT=SUNITS. SPACE-(CYL, (3, I) ̂ . DISP-SCMPDSP.
// DCB-(RECFM-VBS, LRECL=X,BLKSIZE=SHALFTRK;
//* COMPOSITION MACROSCOPIC CROSS-SECTION DATASET.
//DIF3D DD DSN=SDIF3D,UNIT=SUNITS,SPACE-(TRK, (1,0)),DISP=SDIFDSP,
// DCB=(RECFM-VBS,LRECL-X,BLKSIZE-SQRTRTR.0
//* I, 2 OR 3D DIFFUSION MODULE DEPENDENT BINARY DATASET.
//DIRANG DD DSN=SDIRANG. UNIT-SUNIT3. SPACE-(CYL. (01. D) .
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
//* DIRECT ANGLUAR FLUX DATASET.
//DLAYXS DD DSN=SDLAYXS.UNIT-SUNITS.SPACE=-(CYL. (3, 1)) , DISP-SDLADSP.
// DCB=- (RECFM-VBS, LRECL-X, BLKSIZE-SHALFTRK)
//* PRECURSOR YELDS, EMISSION SPECTRA, AND DECAY CONSTANTS
//• ORDERED BY ISOTOPE
//D3EDIT DD DSN-SD3EDIT,UNIT=SUNITS,SPACE-(CYL. (1.1)).DISP-SD3DSP,

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

-45-

// DCB=(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)]
//* DIF3D EDITS INTERFACE DATASET.
//FIXSRC DD DSN=SFIXSRC,UNIT-SUNITS.SPACE-{CYL.(01,1)).
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
II* CCCC FIXED SOURCE DATASET. {
//FPRINT DD DSN-SFPRINT,UNIT-SUNITSCR.SPACE=(CYL.(I.1)). 1
// DCB-(RECFM-VBS.LRECL-X. BLKSIZE-SHALFTRK) j
//* FPRINT FILE FOR LASIP3. I
//GEODST DD DSN-SGEODST,UNIT-SUNITS.SPACE=(CYL.(01.1)).DISP=SGEODSP. i
// DCB=(RECFM-VBS,LRECL-X.BLKSIZE-SHALFTRK)
//* CCCC GEOMETRY DESCRIPTION DATASET. ,
//Gt^PHICS DD PLOTTER-GIDATA.DISP=(MOD.KEEP).DSN-SGIDATA,
// SPACE-(TRK.(150.10)).UNIT-SASCR
//« GRAPHICS OUTPUT DATASET
//INPTAP DD DSN=SINPTAP.UNIT-SUNITSCR,SPACE-(CYL, (01. 1)),
// DCB-(RECFM=VBS.LRECL-X.BLKSIZE-SHALFTRK) j
//* INPTAP FILE FOR LASIP3. {
//ISNTXS DD DSN=SSISNTXS.UNIT=SUNIT$.SPACE-(CYL, (04, 1)) , I
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE=SHALFTRK) i
//• CCCC (ISOTXS) TYPE FILE PRODUCED BY CSEOIO \
//ISOTXS DD DSN-SISOTXS.DISP=SISODSP.SPACE-(CYL.(SISOCYL.1)). \
11 UNIT-SUNITS.VOL-SER-SISOVOL. •
// DCB-(RECFM-VBS.LRECL-X,BLKSIZE-SHALFTRK) i
//* CCCC NUCLIDE-ORDERED MICROSCOPIC CROSS SECTIONS.
//IS0TXS2 DD DSN-SIS0TX2.UNIT-SUNITS.SPACE-(CYL.(04.0)),
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* CCCC (ISOTXS) FILE USED FOR MERGING IN CSEOIO ;
//IS0TXS3 DD DSN-SIS0TX3,UNIT-SUNITS.SPACE-(CYL, (04.0)) ,
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
//* CCCC (ISOTXS) FILE USED FOR MERGING IN CSEOIO
//LABELS DD DSN-SLABELS.UNIT-SUNITS.SPACE-(TRK.(3.0)),DISP-SLABDSP.
// DCB-(RECB'M-VBS. LRECL-X. BLKSIZE-STWELTRK)
//* A.NIP3 LABELS AND AREA DEFINITIONS.
//NAFLUX DD DSN-SNAFLUX.DISP-SNADSP.SPACE-(CYL,(SNACYL,I)), '
// UNIT-SUNITS.VOL-SER-SNAVOL. !
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* RESTART FILE FOR ADJOINT NODAL HEX CALCULATION. i
//NDXSRF DD DSN-SNDXSRF,UNIT-SUNITS.SPACE-(TRK.(03.0)),DISP-SNDXDSP. :
// DCB-(RECFM-VBS. LRECL-X. BLKSIZE-SHALFTRK) i;
//* CCCC NUCLIDE/CROSS SECTION REFERENCING DATA. ii
//NHFLUX DD DSN-SNHFLUX.DISP-SNHDSP.SPACE-(CYL.(SNHCYL.1)), |
// UNIT-SUNITS.VOL-SER-SNHVOL. 3
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK) |
//* RESTART FILE FOR REAL NODAL HEX CALCULATION. j
//PKEDIT DD DSN-SPKEDIT.UNIT-SUNITSCR.SPACE-(CYL,(1.1)). |
// DCB-(RECFM-VBS,LRECL-X.BLKSIZE-SHALFTRK)
//* PEAK POWER DENSITY AND FLUX INTERFACE DATASET. j
//PMATFUC DD DSN-SPMATRX.UNIT-SUNITS.SPACE-(TRK,(03.0)),DISP-SPMADSP. •
// DCB-(RECFM-VBS, LRECL-X, BLKSIZE-SHALFTRK) '\

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

• 4 6 -

/ / * CCCC NUCLIDE/CROS? SECTION REF'IFKCIIiG DATA.
//PWDINT DD DSN-SPWDINT. U.'^IT-j; .^NirS,3PACt-(CYL, ; 0 I , 1)) . DISF-'SPWF'DSP,
/ / DC13- (RECFM-VBS, LRECL-X, BLKSIZ'J^.'.HALFTRK)
//* CCCC POWER DENSITY INTERFACE DATASET.
//RAFLUX DD DSN-SRAFLUX. DI.^F-SFIADSP . SPACE" (CYL. (SRACYL, 1)) ,
// UNIT-SUNTTO,VOL-3EP-SATVOL,
// DCB-(RECFM-VBS,''RE-;;-.<,BLKSIZE=SHA1FTRK)
//* CCCC REAL ANGUi-AK FLuX DATASET.
//RNDMOl DD DSN-SSPSIOLD,SPACE=(SBLKTYP, (SPSICYL,!)),
// DCB=SMODEDCB,UNIT=SUNITSCR
//* FLUX ITERATE SCRATCh DATASET.
//RNDM02 DD DSN-&4PSINEW,SPACE-(SELKTYP, (SPSICYI.1)) ,
// DCB=SMODEDCE,UNIT-SUNITSCR
//* FLUX ITERATE SCRATCH DATASET.
//RNDM03 DD DSN-SSPSIUP,SPACE-(SBLKTYP. (SPSUCYL, 1) . ,
// DCB-SMODEDCB,UNIT=SUNITSCR
//* AUXILIARY FLUX DATASET FOR ADJOINT UPSCATTER ITERATIONS
//RNDM04 DD DSN-SSFDCOEF,SPACE-(SBLKTYP,(SFDCCYL,1)),
// DCB=SMODEDCB,UNIT=SUNITSCR
//* FINITE DIFFERENCE COEFFICIENTS SCRATCH O.VIASET.
//RNDM05 DD DSN-SSFRNOLD,SPACE-(SBLKTYP. (SFLXCYL, l;) ,
// DCB-SMODEDCB,UNIT-SUNITSCR
//* FISSION SOURCE SCFtATCH DATASET
//RNDM06 DD DSN-SSFRNNEW,SPACE-(SBLKTYP, (SFLXCYL,1)) ,
// DCB=SMODEDCB,UNIT=SUNITSCR
//* FISSION SOURCE SCty^TCH DATASET
//RNDM07 DD DSN-SSFRNMl,SPACE-(SBLKTYP, (SFLXCYL,1)) ,
// DCB-SMODEDCB,UNIT-SUNITSCR
//* FISSION SOURCE SCRATCH DATASET.
//RNDM08 DD DSN-SSFRNM2,SPACE-(SBLKTYP, (SFLXCYL, I)) ,
// DCB-SMODEDCB.UNIT-SUNITSCR
//* FISSION SOURCE SCRATCH DATASET.
//RNDM09 DD DSN=SSSRCNEW.SPACE-(SBLKTYP.(SFLXCYL.1)),
// DCB-SMODEDCB,UNIT-SUNITSCR ,
//* TOTAL SOURCE SCRATCH DATASET.
//RNDMIO DD DSN=SSZONMAP.SPACE-(SBLKTYP.(SZONCYL.l)),
// DCB=SMODEDCB,UNIT-SUNITSCR
//* ZONE MAP SCRATCH DATASET.
//RNDMll DD DSN=SSCXSECT,SPACE-(SBLKTYP, (SCXSCYL,!)),
// DCB-SMODEDCB,UNIT={UNITSCR
//* COMPOSITION CROSS SECTIONS SCRATCH DATASET.
//RNDM12 DD DSN=SSFSRC,SPACE-(SBLKTYP,(SPSICYL,!)),
// DCB=SMODEDCB,UNIT-SUNITSCR

//* FIXED SOURCE SCRATCH DATASET.
//RNDM13 DD DSN-SSPSIGO, SPACE-(SBLKTYP, (SFLXCYL, D) ,
// DCB-SMODEDCB,UNIT=SUNITSCR
//* FLUX ITERATE SCFIATCH DATASET ONE GROUP.
//RNDM14 DD DSN-SSPSIGN,SPACE-(SBLKTYP, (SFLXCYL,1)) ,
// DCB-SMODEDCB,UNIT=SUNITSCR

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

-47-

//• FLUX ITERATE SCRATCH DATASET ONE GROUP.
//RNDM15 DD DSN-SSFiNDMl5, SPACE-(SBLKTYP, (1. 1)) .
// DCB-SMODEDCB,UNIT-SUNITSCR
//* FLUX ITERATE SCRATCH DATASET ONE GROUP.
//RTFLUX DD DSN-SRTFLUX,DISP-SRTDSP.SPACE-(CYL.(SRTCYL.1)).
// UNIT-SUNITS.VOL-SER-SRTVOL.
// DCB-(RECFM-VBS.LRECL-X,BLKSIZE-SHALFTRK)
//* CCCC REAL FLUX INTERFACE DATASET.
//RZFLUX DD DSN-SRZFLUX,UNIT-SUNITS,SPACE-(TRK,(01,1)),DISP-SRZDSP,
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//• CCCC ZONE AVERAGED FLUX INTERFACE DATASET.
//SCRATH DD DSN-SSCRATH.UNIT-SUNITSCR.SPACE-(CYL.(1.1)).
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* SCFÛ TH FILE FOR LASIP3.
//SCROOI DD DSN-SSCROOl.UNIT-SUNITSCR.SPACE-{CYL.(SSRFCYL.2)).
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* SCRATCH FILE 1.
//SCR002 DD DSN-SSCR002,UNIT-SUNITSCR.SPACE-(CYL,(SSRFCYL,2)),
// DCB-(tlECFM-VBS, LRECL-X. BLKSIZE-SHALFTRK)
//* SCFIATCH FILE 2.
//SCR003 DD DSN-SSCR003.UNIT-SUNITSCR.SPACE-(CYL.(01.1)),
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* SCRATCH FILE 3.
//SCR004 DD DSN-SSCR004,UNIT-SUNITSCR,SPACE-(CYL.(01.I)),
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
//* SCRATCH FILE 4.
//SCR005 DD DSN-SSCR005,UNIT-SUNITSCR,SPACE-(CYL,(01,1)),
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
//* SCFIATCH FILE 5.
//SCR006 DD DSN=SSCR006,UNIT-SUNITSCR,SPACE-(CYL,(01,1)),
// DCB-(RECFM-VBS. LRECL-X.BLKSIZE-SHALFTRK)
//* SCRATCH FILE 6.
//SCR007 DD DSN-SSCR007,UNIT-SUNITSCR,SPACE-(CYL,(01,1)),
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
//* SCRATCH FILE 7.
//SCR008 DD DSN-SSCR008,UNIT-SUNITSCR,SPACE-(CYL,(01,1)),
// DOB-(RECFM-VBS,LRECL-X, BLKSIZE-SHALFTRK)
//* SCRATCH FILE 8.
//SCR009 DD DSN-SSCR009,UNIT-SUNITSCR,SPACE-(CYL,(01,1)),
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* SCRATCH FILE 9.
//SCROIO DD DSN-SSCROIO.UNIT-SUNITSCR.SPACE-(CYL.(01.1)), i
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* SCRATCH FILE 10.
//SEARCH DD DSN-SSEARCH,UNIT-SUNITSCR.SPACE-(TRK.(03.0)),
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK)
//* CCCC CRITICALITY SEARCH DATA.
//SFEDIT DD DSN-SSFEDIT.UNIT-SUNITS.SPACE-(CYL.(01.1)).DISP-SSFDSP.
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-S HALFTRK)

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

-48-

//* SURFACE- AND CELL-AVERAGED POWER DENSITY AND FAST FLUX
//• DATASET 1
//SNCONS DD DSN-SSNCONS.UNIT-S UNITSCR. SPACE-ClIK, (01,1)),]
// DCB-(RECFM-VDS.LRECL-X,BLKSIZE-SHALFTRK)]
//* CCCC SN CONSTANTS DATASET.

//STACK DD DSN-SSTACK,UNIT=&UNITS,SPACE-(CYL, (01,1)),DISP=&bTADSP,
// DCB-(RECFM-VBS, LRECL"X,B.LKSIZE-SHALFTRK) '•
II* STACK DATASET
//SYSUDUMP DD SY30UT-SDMPDEST
//* SYSTEM DUMP DATASET FOR ABNORMAL NJB lERMINATION.
//UDOITl DD DSN=SUDOITl,UNIT=SUNITSCi<, SPACE-(CYL, (01, 1)) , \
II DCB-(RECFM-VBS, LRECL-X, BLKSIZE-SHAL.rTRK) \
II* UDOIT INTERFACE FILE '/ERSION 1. j
//UD0IT2 DD DSN-SUD0IT2.UNIT-SUNITSCR,S''ACE--'(CYL, (01, 1)) , I
// DCB= (RECFM-VBS, LRECL=X, BLKSIZE-SHALFTRK) '
//* UDOIT INTERFACE FILE VERSION 2.
//UD0IT3 DD DSN-SUD0IT3.UNIT-SUNITSCR,SPACE-(CYL, (01, 1)) ,
// DCB-(RECFM-VBS,LRECL-X,BLKSIZE-SHALFTRK)
//* UDOIT INTERFACE FILE VERSION 3.
//ZNATDN DD DSN-SZNATDN,UNIT-SUNITS.SPACE-(CYL. (01.1)).DISP-SZNADSP, '
// DCB-(RECFM-VBS.LRECL-X.BLKSIZE-SHALFTRK) • j
//* CCCC ZONE NUCLIDE ATOM DENSITIES. I
//* ** k***,^*\: , . * * * * * * * * * * * * * * * * * *

//* i
//* ANYONE EXPERIENCING DIFFICULTY WITH THIS PROCEDURE CONTACT
//* C. ADAMS BLDG 208. ROOM W117, EXT 4820

//* j
//* ***
//••

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

-49 -

WGOSSli!
NMONN-:

UiB«KJ

^

